

awslimitchecker

[image: PyPi package version]
 [https://pypi.python.org/pypi/awslimitchecker][image: PyPi downloads]
 [http://jantman-personal-public.s3-website-us-east-1.amazonaws.com/pypi-stats/awslimitchecker/index.html][image: GitHub Forks]
 [https://github.com/jantman/awslimitchecker/network][image: GitHub Open Issues]
 [https://github.com/jantman/awslimitchecker/issues][image: 'Stories in Ready - waffle.io']
 [https://waffle.io/jantman/awslimitchecker][image: Project Status: Active - The project has reached a stable, usable state and is being actively developed.]
 [http://www.repostatus.org/#active][image: gitter.im chat]
 [https://gitter.im/awslimitchecker/Lobby]Master:

[image: travis-ci for master branch]
 [http://travis-ci.org/jantman/awslimitchecker][image: Code Health]
 [https://landscape.io/github/jantman/awslimitchecker/master][image: coverage report for master branch]
 [https://codecov.io/github/jantman/awslimitchecker?branch=master][image: sphinx documentation for latest release]
 [https://readthedocs.org/projects/awslimitchecker/?badge=latest]Develop:

[image: travis-ci for develop branch]
 [http://travis-ci.org/jantman/awslimitchecker][image: Code Health]
 [https://landscape.io/github/jantman/awslimitchecker/develop][image: coverage report for develop branch]
 [https://codecov.io/github/jantman/awslimitchecker?branch=develop][image: sphinx documentation for develop branch]
 [https://readthedocs.org/projects/awslimitchecker/?badge=develop]A script and python module to check your AWS service limits and usage, and warn when usage approaches limits.

Users building out scalable services in Amazon AWS often run into AWS’ service limits [http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html] -
often at the least convenient time (i.e. mid-deploy or when autoscaling fails). Amazon’s Trusted Advisor [https://aws.amazon.com/premiumsupport/trustedadvisor/]
can help this, but even the version that comes with Business and Enterprise support only monitors a small subset of AWS limits
and only alerts weekly. awslimitchecker provides a command line script and reusable package that queries your current
usage of AWS resources and compares it to limits (hard-coded AWS defaults that you can override, API-based limits where available, or data from Trusted
Advisor where available), notifying you when you are approaching or at your limits.

Full project documentation for the latest release is available at http://awslimitchecker.readthedocs.io/en/latest/.

Status

awslimitchecker is mature software, with approximately 9,000 downloads per month and in daily use at numerous organizations.

Development status is being tracked on a board at waffle.io: https://waffle.io/jantman/awslimitchecker

What It Does

	Check current AWS resource usage against AWS Service Limits

	Show and inspect current usage

	Override default Service Limits (for accounts with increased limits)

	Compare current usage to limits; return information about limits that
exceed thresholds, and (CLI wrapper) exit non-0 if thresholds are exceeded

	Define custom thresholds per-limit

	where possible, pull current limits from Trusted Advisor API

	where possible, pull current limits from each service’s API (for services that provide this information)

	Supports explicitly setting the AWS region

	Supports using STS [http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html] to assume roles in other accounts, including using external_id.

	Optionally refresh Trusted Advisor “Service Limits” check before polling
Trusted Advisor data, and optionally wait for the refresh to complete (up to
an optional maximum time limit). See
Getting Started - Trusted Advisor
for more information.

Requirements

	Python 2.6, 2.7, 3.3+.

	Python VirtualEnv [http://www.virtualenv.org/] and pip (recommended installation method; your OS/distribution should have packages for these)

	boto3 [http://boto3.readthedocs.org/] >= 1.2.3

Installation and Usage

See Getting Started.

Credentials

See Credentials.

Getting Help and Asking Questions

See Getting Help.

For paid support and development options, please see the
Enterprise Support Agreements and Contract Development
section of the documentation.

There is also a gitter.im chat channel [https://gitter.im/awslimitchecker/Lobby] for support and discussion.

Changelog

See Changelog.

Contributions

Pull requests are most definitely welcome. Please cut them against the develop branch. For more information, see
the development documentation. I’m
also happy to accept contributions in the form of bug reports, feature requests, testing, etc.

License

awslimitchecker is licensed under the GNU Affero General Public License, version 3 or later [http://www.gnu.org/licenses/agpl.html].
This shouldn’t be much of a concern to most people; see Development / AGPL for more information.

Contents

	Getting Started
	What It Does

	Nomenclature

	Requirements

	Installing
	Version Specification

	Credentials

	Regions

	Trusted Advisor

	Required Permissions

	Command Line Usage
	Examples
	Listing Supported Services

	Listing Default Limits

	Viewing Limits

	Disabling Trusted Advisor Checks

	Disabling Specific Services

	Checking Usage

	Overriding Limits

	Check Limits Against Thresholds

	Set Custom Thresholds

	Required IAM Policy

	Connect to a Specific Region

	Assume a Role in Another Account with STS

	Python Usage
	Full Jenkins Example

	Simple Examples
	Instantiating the Class

	Specifying a Region

	Refreshing Trusted Advisor Check Results

	Assuming a Role with STS

	Setting a Limit Override

	Setting a Threshold Override

	Checking Thresholds

	Disabling Trusted Advisor

	Skipping Specific Services

	Logging

	Advanced Examples
	CI / Deployment Checks

	Required IAM Permissions

	Supported Limits
	Trusted Advisor Data

	Limits Retrieved from Service APIs

	Current Checks
	ApiGateway

	AutoScaling

	CloudFormation

	DynamoDB

	EBS

	EC2

	EFS

	ELB

	ElastiCache

	ElasticBeanstalk

	Firehose

	IAM

	RDS

	Redshift

	S3

	SES

	VPC

	Getting Help
	Enterprise Support Agreements and Contract Development

	Reporting Bugs and Asking Questions

	Guidelines for Reporting Issues
	Feature Requests

	Bug Reports

	Development
	Pull Requests
	Pull Request Guidelines

	Installing for Development

	Guidelines

	Adding New Limits and Checks to Existing Services

	Adding New Services

	Trusted Advisor Checks

	Unit Testing

	Integration Testing

	Building Docs

	AGPL License

	Handling Issues and PRs

	Versioning Policy

	Release Checklist
	Release Issue Template

	Internals
	Overall Program Flow

	Trusted Advisor

	Service API Limit Information

	Limit Value Precedence

	Threshold Overrides

	API
	awslimitchecker package
	Subpackages
	awslimitchecker.services package

	Submodules
	awslimitchecker.checker module

	awslimitchecker.connectable module

	awslimitchecker.limit module

	awslimitchecker.runner module

	awslimitchecker.trustedadvisor module

	awslimitchecker.utils module

	awslimitchecker.version module

	Changelog
	1.0.0 (2017-09-21)

	0.11.0 (2017-08-06)

	0.10.0 (2017-06-25)

	0.9.0 (2017-06-11)

	0.8.0 (2017-03-11)

	0.7.0 (2017-01-15)

	0.6.0 (2016-11-12)

	0.5.1 (2016-09-25)

	0.5.0 (2016-07-06)

	0.4.4 (2016-06-27)

	0.4.3 (2016-05-08)

	0.4.2 (2016-04-27)

	0.4.1 (2016-03-15)

	0.4.0 (2016-03-14)

	0.3.2 (2016-03-11)

	0.3.1 (2016-03-04)

	0.3.0 (2016-02-18)

	0.2.3 (2015-12-16)

	0.2.2 (2015-12-02)

	0.2.1 (2015-12-01)

	0.2.0 (2015-11-29)

	0.1.3 (2015-10-04)

	0.1.2 (2015-08-13)

	0.1.1 (2015-08-13)

	0.1.0 (2015-07-25)

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

What It Does

	Check current AWS resource usage against AWS Service Limits

	Show and inspect current usage

	Override default Service Limits (for accounts with increased limits)

	Compare current usage to limits; return information about limits that
exceed thresholds, and (CLI wrapper) exit non-0 if thresholds are exceeded

	Define custom thresholds per-limit

	Where possible, pull current limits from Trusted Advisor API

	Supports explicitly setting the AWS region

	Supports using STS [http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html]
to assume roles in other accounts, including using external_id.

	Optionally refresh Trusted Advisor “Service Limits” check before polling
Trusted Advisor data, and optionally wait for the refresh to complete (up to
an optional maximum time limit). See
Getting Started - Trusted Advisor
for more information.

Nomenclature

	Service

	An AWS Service or Product, such as EC2, VPC, RDS or ElastiCache. More specifically, Services in AwsLimitChecker correspond to
distinct APIs for AWS Services [http://aws.amazon.com/documentation/].

	Limit

	An AWS-imposed maximum usage for a certain resource type in AWS. See AWS Service Limits [http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html].
Limits are generally either account-wide or per-region. They have AWS global default values, but can be increased by AWS Support. “Limit” is also the term used
within this documentation to describe AwsLimit objects, which describe a specific AWS Limit within this program.

	Usage

	“Usage” refers to your current usage of a specific resource that has a limit. Usage values/amounts (some integer or floating point number, such as number of VPCs
or GB of IOPS-provisioned storage) are represented by instances of the AwsLimitUsage class. Limits that are measured as a subset of some “parent”
resource, such as “Subnets per VPC” or “Read Replicas per Master” have their usage tracked per parent resource, so you can easily determine which ones are problematic.

	Threshold

	The point at which AwsLimitChecker will consider the current usage for a limit to be problematic. Global thresholds default to usage >= 80% of limit for “warning” severity,
and usage >= 99% of limit for “critical” severity. Limits which have reached or exceeded their threshold will be reported separately for warning and critical (we generally
consider “warning” to be something that will require human intervention in the near future, and “critical” something that is an immediate problem, i.e. should block
automated processes). The awslimitchecker command line wrapper can override the default global thresholds. The AwsLimitChecker class can both override
global percentage thresholds, as well as specify per-limit thresholds as a percentage, a fixed usage value, or both. For more information on overriding thresholds, see
Python Usage / Setting a Threshold Override as well as the documentation for AwsLimitChecker.check_thresholds()
and AwsLimitChecker.set_threshold_override().

Requirements

	Python 2.6, 2.7, 3.3+.

	Python VirtualEnv [http://www.virtualenv.org/] and pip (recommended installation method; your OS/distribution should have packages for these)

	boto3 [http://boto3.readthedocs.org/] >= 1.2.3

Installing

It’s recommended that you install into a virtual environment (virtualenv /
venv). See the virtualenv usage documentation [http://www.virtualenv.org/]
for more details, but the gist is as follows (the virtualenv name, “limitchecker” here,
can be whatever you want):

virtualenv limitchecker
source limitchecker/bin/activate
pip install awslimitchecker

Version Specification

If you’re using awslimitchecker in automated tooling that recreates the virtualenv
(such as Jenkins or cron jobs, etc) you’ll probably want to install a specific version
so that the job doesn’t unexpectedly break. It’s recommended that you pin your installation
to a major version. According to awslimitchecker’s versioning policy,
this should ensure that you get the latest awslimitchecker version that’s compatible with
your IAM policy and dependencies and has no backwards-incompatible API changes.

Credentials

Aside from STS, awslimitchecker does nothing with AWS credentials, it leaves that to boto itself.
You must either have your credentials configured in one of boto3’s supported config
files or set as environment variables. If your credentials are in the cross-SDK
credentials file (~/.aws/credentials) under a named profile section, you can
use credentials from that profile by specifying the -P / --profile command
lint option. See
boto3 config [http://boto3.readthedocs.org/en/latest/guide/configuration.html#guide-configuration]
and
this project’s documentation [http://awslimitchecker.readthedocs.org/en/latest/getting_started.html#credentials]
for further information.

Please note that version 0.3.0 of awslimitchecker moved from using boto as its AWS API client to using
boto3. This change is mostly transparent, but there is a minor change in how AWS credentials are handled. In
boto, if the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables were set, and the
region was not set explicitly via awslimitchecker, the AWS region would either be taken from the AWS_DEFAULT_REGION
environment variable or would default to us-east-1, regardless of whether a configuration file (~/.aws/credentials
or ~/.aws/config) was present. With boto3, it appears that the default region from the configuration file will be
used if present, regardless of whether the credentials come from that file or from environment variables.

When using STS, you will need to specify the -r / --region option as well as the -A / --sts-account-id
and -R / --sts-account-role options to specify the Account ID that you want to assume a role in, and the
name of the role you want to assume. If an external ID is required, you can specify it with -E / --external-id.

In addition, when assuming a role STS, you can use a MFA device [https://aws.amazon.com/iam/details/mfa/]. simply
specify the device’s serial number with the -M / --mfa-serial-number option and a token generated by the device
with the -T / --mfa-token option. STS credentials will be cached for the lifetime of the program.

Important Note on Session and Federation (Temporary) Credentials: The temporary credentials granted by the AWS IAM
GetFederationToken [http://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html]
and GetSessionToken [http://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html]
API calls will throw errors when trying to access the IAM API (except for Session tokens, which will
work for IAM API calls only if an MFA token is used). Furthermore, Federation tokens cannot make use
of the STS AssumeRole functionality. If you attempt to use awslimitchecker with credentials generated
by these APIs (commonly used by organizations to hand out limited-lifetime credentials), you will likely
encounter errors when checking IAM limits. If this is acceptable, you can use these credentials by setting
the AWS_SESSION_TOKEN environment variable in addition to AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY,
or by otherwise configuring these credentials in a way that’s supported by
boto3 configuration [http://boto3.readthedocs.org/en/latest/guide/configuration.html#guide-configuration].

Regions

To specify the region that awslimitchecker connects to, use the -r / --region
command line option. At this time awslimitchecker can only connect to one region at a time;
to check limits in multiple regions, simply run the script multiple times, once per region.

Trusted Advisor

awslimitchecker supports retrieving your current service limits via the
Trusted Advisor [https://aws.amazon.com/premiumsupport/trustedadvisor/]
“Service Limits” performance check [https://aws.amazon.com/premiumsupport/trustedadvisor/best-practices/#performance]
, for limits which Trusted Advisor tracks (currently a subset of what awslimitchecker
knows about). The results of this check may not be available via the API for all
accounts; as of December 2016, the Trusted Advisor documentation states that while
this check is available for all accounts, API access is only available to accounts
with Business- or Enterprise-level support plans. If your account does not have
Trusted Advisor access, the API call will result in a SubscriptionRequiredException
and awslimitchecker will log a Cannot check TrustedAdvisor message at
warning level.

Trusted Advisor information is important to awslimitchecker, however, as it provides
the current service limit values for a number of limits that cannot be obtained
any other way. While you can completely disable Trusted Advisor polling via the
--skip-ta command-line option, you will then be left with default service
limit values for many limits.

As of 0.7.0, awslimitchecker also supports programmatically refreshing the
“Service Limits” Trusted Advisor check, in order to get updated limit values. If
this is not done, the data provided by Trusted Advisor may not be updated unless
a human does so via the AWS Console. The refresh logic operates in one of three
modes, controlled by command-line options (these are also exposed in the Python
API; see the “Internals” link below):

	--ta-refresh-wait - The check will be refreshed and awslimitchecker will
poll every 30 seconds waiting for the refresh to complete (or until
ta_refresh_timeout seconds have elapsed).

	--ta-refresh-older INTEGER - This operates like the --ta-refresh-wait
option, but will only refresh the check if its current result data is at least
INTEGER seconds old.

	--ta-refresh-trigger - The check will be refreshed and the program will
continue on immediately, without waiting for the refresh to
complete; this will almost certainly result in stale check results in the current
run. However, this may be useful if you desire to keep awslimitchecker runs
short, and run it on a regular schedule (i.e. if you run awslimitchecker
every 6 hours, and are OK with Trusted Advisor check data being 6 hours old).

Additionally, there is a --ta-refresh-timeout option. If this is set (to an integer),
refreshes of the check will time out after that number of seconds. If a timeout
occurs, a message will be logged at error level, but the program will continue
running (most likely using the old result data).

Important: It may take 30 to 60 minutes for the Service Limits check to
refresh on large accounts. Please be aware of this when enabling the refresh
options.

Using the check refresh options will require the trustedadvisor:RefreshCheck
IAM permission.

See Internals - Trusted Advisor for technical
information on the implementation of Trusted Advisor polling.

Required Permissions

You can view a sample IAM policy listing the permissions required for awslimitchecker to function properly
either via the CLI client:

awslimitchecker --iam-policy

Or as a python dict:

from awslimitchecker.checker import AwsLimitChecker
c = AwsLimitChecker()
iam_policy = c.get_required_iam_policy()

You can also view the required permissions for the current version of awslimitchecker at Required IAM Permissions.

Command Line Usage

awslimitchecker ships with a command line script for use outside of
Python environments. awslimitchecker is installed as a
setuptools entry point [https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points],
and will be available wherever you install the package (if you install
in a virtual environment as recommended, it will be in the venv’s bin/ directory).

The command line script provides simple access to the most common features,
though not full access to all configuration possibilities. In addition, when checking
usage, the script will exit 0 of everything is OK, 1 if there are warnings, and 2 if there
are critical thresholds exceeded (though the output is not currently suitable for direct
use as a Nagios-compatible plugin).

(venv)$ awslimitchecker --help
usage: awslimitchecker [-h] [-S [SERVICE [SERVICE ...]]]
 [--skip-service SKIP_SERVICE] [-s] [-l]
 [--list-defaults] [-L LIMIT] [-u] [--iam-policy]
 [-W WARNING_THRESHOLD] [-C CRITICAL_THRESHOLD]
 [-P PROFILE_NAME] [-A STS_ACCOUNT_ID]
 [-R STS_ACCOUNT_ROLE] [-E EXTERNAL_ID]
 [-M MFA_SERIAL_NUMBER] [-T MFA_TOKEN] [-r REGION]
 [--skip-ta]
 [--ta-refresh-wait | --ta-refresh-trigger | --ta-refresh-older TA_REFRESH_OLDER]
 [--ta-refresh-timeout TA_REFRESH_TIMEOUT] [--no-color]
 [--no-check-version] [-v] [-V]
Report on AWS service limits and usage via boto3, optionally warn about any
services with usage nearing or exceeding their limits. For further help, see
<http://awslimitchecker.readthedocs.org/>
optional arguments:
 -h, --help show this help message and exit
 -S [SERVICE [SERVICE ...]], --service [SERVICE [SERVICE ...]]
 perform action for only the specified service name;
 see -s|--list-services for valid names
 --skip-service SKIP_SERVICE
 avoid performing actions for the specified service
 name; see -s|--list-services for valid names
 -s, --list-services print a list of all AWS service types that
 awslimitchecker knows how to check
 -l, --list-limits print all AWS effective limits in
 "service_name/limit_name" format
 --list-defaults print all AWS default limits in
 "service_name/limit_name" format
 -L LIMIT, --limit LIMIT
 override a single AWS limit, specified in
 "service_name/limit_name=value" format; can be
 specified multiple times.
 -u, --show-usage find and print the current usage of all AWS services
 with known limits
 --iam-policy output a JSON serialized IAM Policy listing the
 required permissions for awslimitchecker to run
 correctly.
 -W WARNING_THRESHOLD, --warning-threshold WARNING_THRESHOLD
 default warning threshold (percentage of limit);
 default: 80
 -C CRITICAL_THRESHOLD, --critical-threshold CRITICAL_THRESHOLD
 default critical threshold (percentage of limit);
 default: 99
 -P PROFILE_NAME, --profile PROFILE_NAME
 Name of profile in the AWS cross-sdk credentials file
 to use credentials from; similar to the corresponding
 awscli option
 -A STS_ACCOUNT_ID, --sts-account-id STS_ACCOUNT_ID
 for use with STS, the Account ID of the destination
 account (account to assume a role in)
 -R STS_ACCOUNT_ROLE, --sts-account-role STS_ACCOUNT_ROLE
 for use with STS, the name of the IAM role to assume
 -E EXTERNAL_ID, --external-id EXTERNAL_ID
 External ID to use when assuming a role via STS
 -M MFA_SERIAL_NUMBER, --mfa-serial-number MFA_SERIAL_NUMBER
 MFA Serial Number to use when assuming a role via STS
 -T MFA_TOKEN, --mfa-token MFA_TOKEN
 MFA Token to use when assuming a role via STS
 -r REGION, --region REGION
 AWS region name to connect to; required for STS
 --skip-ta do not attempt to pull *any* information on limits
 from Trusted Advisor
 --ta-refresh-wait If applicable, refresh all Trusted Advisor limit-
 related checks, and wait for the refresh to complete
 before continuing.
 --ta-refresh-trigger If applicable, trigger refreshes for all Trusted
 Advisor limit-related checks, but do not wait for them
 to finish refreshing; trigger the refresh and continue
 on (useful to ensure checks are refreshed before the
 next scheduled run).
 --ta-refresh-older TA_REFRESH_OLDER
 If applicable, trigger refreshes for all Trusted
 Advisor limit-related checks with results more than
 this number of seconds old. Wait for the refresh to
 complete before continuing.
 --ta-refresh-timeout TA_REFRESH_TIMEOUT
 If waiting for TA checks to refresh, wait up to this
 number of seconds before continuing on anyway.
 --no-color do not colorize output
 --no-check-version do not check latest version at startup
 -v, --verbose verbose output. specify twice for debug-level output.
 -V, --version print version number and exit.
awslimitchecker is AGPLv3-licensed Free Software. Anyone using this program,
even remotely over a network, is entitled to a copy of the source code. Use
`--version` for information on the source code location.

Examples

In the following examples, output has been truncated to simplify documentation.
When running with all services enabled, awslimitchecker will provide many lines
of output. (...) has been inserted in the output below to denote removed
or truncated lines.

Listing Supported Services

View the AWS services currently supported by awslimitchecker with the
-s or --list-services option.

(venv)$ awslimitchecker -s
ApiGateway
AutoScaling
CloudFormation
DynamoDB
EBS
(...)
Redshift
S3
SES
VPC

Listing Default Limits

To show the hard-coded default limits, ignoring any limit overrides
or Trusted Advisor data, run with --list-defaults:

(venv)$ awslimitchecker --list-defaults
ApiGateway/API keys per account 500
ApiGateway/APIs per account 60
ApiGateway/Client certificates per account 60
ApiGateway/Custom authorizers per API 10
ApiGateway/Documentation parts per API 2000
(...)
VPC/Subnets per VPC 200
VPC/VPCs 5
VPC/Virtual private gateways 5

Viewing Limits

View the limits that awslimitchecker currently knows how to check, and what
the limit value is set as (if you specify limit overrides, they will be used
instead of the default limit) by specifying the -l or --list-limits
option. Limits followed by (TA) have been obtained from Trusted Advisor
and limits followed by (API) have been obtained from the service’s API.

(venv)$ awslimitchecker -l
ApiGateway/API keys per account 500
ApiGateway/APIs per account 60
ApiGateway/Client certificates per account 60
ApiGateway/Custom authorizers per API 10
ApiGateway/Documentation parts per API 2000
(...)
AutoScaling/Auto Scaling groups 1000 (API)
(...)
VPC/Subnets per VPC 200
VPC/VPCs 1000 (TA)
VPC/Virtual private gateways 5

Disabling Trusted Advisor Checks

Using the --skip-ta option will disable attempting to query limit information
from Trusted Advisor for all commands.

(venv)$ awslimitchecker -l --skip-ta
ApiGateway/API keys per account 500
ApiGateway/APIs per account 60
ApiGateway/Client certificates per account 60
ApiGateway/Custom authorizers per API 10
ApiGateway/Documentation parts per API 2000
(...)
AutoScaling/Auto Scaling groups 1000 (API)
(...)
VPC/Subnets per VPC 200
VPC/VPCs 5
VPC/Virtual private gateways 5

Disabling Specific Services

The --skip-service option can be used to completely disable the specified
service name(s) (as shown by -s / --list-services) for services that are
problematic or you do not wish to query at all.

For example, you can check usage of all services _except_ for Firehose and
EC2:

(venv)$ awslimitchecker --skip-service=Firehose --skip-service EC2
 WARNING:awslimitchecker.checker:Skipping service: Firehose
 WARNING:awslimitchecker.checker:Skipping service: EC2
 ... normal output ...

Checking Usage

The -u or --show-usage options to awslimitchecker show the current
usage for each limit that awslimitchecker knows about. It will connect to the
AWS API and determine the current usage for each limit. In cases where limits are
per-resource instead of account-wide (i.e. “Rules per VPC security group” or
“Security groups per VPC”), the usage will be reported for each possible resource
in resource_id=value format (i.e. for each VPC security group and each VPC, respectively,
using their IDs).

(venv)$ awslimitchecker -u
ApiGateway/API keys per account 19
ApiGateway/APIs per account 54
ApiGateway/Client certificates per account 2
ApiGateway/Custom authorizers per API max: 0bdkl1u8vk=2 (0bdkl1u8vk=2, 0cyhj26jhb=2 (...)
ApiGateway/Documentation parts per API max: 0bdkl1u8vk=2 (0bdkl1u8vk=2, 0cyhj26jhb=2 (...)
(...)
VPC/Subnets per VPC max: vpc-c89074a9=40 (vpc-1e5e3c7b=1, vpc-e2e (...)
VPC/VPCs 17
VPC/Virtual private gateways 5

Overriding Limits

In cases where you’ve been given a limit increase by AWS Support, you can override
the default limits with custom ones. Currently, to do this from the command line,
you must specify each limit that you want to override separately (the
set_limit_overrides() Python method accepts a dict for
easy bulk overrides of limits) using the -L or --limit options. Limits are
specified in a service_name/limit_name=value format, and must be quoted if the
limit name contains spaces.

For example, to override the limits of EC2’s “EC2-Classic Elastic IPs” and
“EC2-VPC Elastic IPs” from their defaults of 5, to 10 and 20, respestively:

(venv)$ awslimitchecker -L "AutoScaling/Auto Scaling groups"=321 --limit="AutoScaling/Launch configurations"=456 -l
ApiGateway/API keys per account 500
ApiGateway/APIs per account 60
ApiGateway/Client certificates per account 60
ApiGateway/Custom authorizers per API 10
ApiGateway/Documentation parts per API 2000
(...)
CloudFormation/Stacks 2000 (API)
(...)
VPC/Subnets per VPC 200
VPC/VPCs 1000 (TA)
VPC/Virtual private gateways 5

This example simply sets the overrides, and then prints the limits for confirmation.

Check Limits Against Thresholds

The default mode of operation for awslimitchecker (when no other action-specific
options are specified) is to check the usage of all known limits, compare them against
the configured limit values, and then output a message and set an exit code depending
on thresholds. The limit values used will be (in order of precedence) explicitly-set
overrides, Trusted Advisor data, and hard-coded defaults.

Currently, the awslimitchecker command line script only supports global warning and
critical thresholds, which default to 80% and 99% respectively. If any limit’s usage is
greater than or equal to 80% of its limit value, this will be included in the output
and the program will exit with return code 1. If any limit’s usage is greater than or
equal to 99%, it will include that in the output and exit 2. When determining exit codes,
critical takes priority over warning. The output will include the specifics of which limits
exceeded the threshold, and for limits that are per-resource, the resource IDs.

The Python class allows setting thresholds per-limit as either a percentage, or an integer
usage value, or both; this functionality is not currently present in the command line wrapper.

To check all limits against their thresholds (in this example, one limit has crossed the warning
threshold only, and another has crossed the critical threshold):

(venv)$ awslimitchecker --no-color
ApiGateway/APIs per account (limit 60) WARNING: 54
DynamoDB/Local Secondary Indexes (limit 5) CRITICAL: some-dynamo-db-table-name (...)
EC2/Security groups per VPC (limit 500) CRITICAL: vpc-c89074a9=784 WARNIN (...)
EC2/VPC security groups per elastic network interface (limit 5) CRITICAL: eni-8226ce61=5 WARNING: e (...)
EFS/File systems (limit 10) CRITICAL: 25
(...)
S3/Buckets (limit 100) CRITICAL: 528
VPC/NAT Gateways per AZ (limit 5) CRITICAL: us-east-1d=9, us-east-1b= (...)
VPC/Virtual private gateways (limit 5) CRITICAL: 5

Set Custom Thresholds

To set the warning threshold of 50% and a critical threshold of 75% when checking limits:

(venv)$ awslimitchecker -W 97 --critical=98 --no-color
DynamoDB/Local Secondary Indexes (limit 5) CRITICAL: some-dynamo-db-table-name (...)
EC2/Security groups per VPC (limit 500) CRITICAL: vpc-c89074a9=784
EC2/VPC security groups per elastic network interface (limit 5) CRITICAL: eni-8226ce61=5
EFS/File systems (limit 10) CRITICAL: 25
ElasticBeanstalk/Application versions (limit 500) CRITICAL: 3789
(...)
S3/Buckets (limit 100) CRITICAL: 528
VPC/NAT Gateways per AZ (limit 5) CRITICAL: us-east-1d=9, us-east-1b= (...)
VPC/Virtual private gateways (limit 5) CRITICAL: 5

Required IAM Policy

awslimitchecker can also provide the user with an IAM Policy listing the minimum
permissions for it to perform all limit checks. This can be viewed with the
--iam-policy option:

(venv)$ awslimitchecker --iam-policy
{
 "Statement": [
 {
 "Action": [
 "apigateway:GET",
(...)
 }
],
 "Version": "2012-10-17"
}

For the current IAM Policy required by this version of awslimitchecker,
see IAM Policy.

Connect to a Specific Region

To connect to a specific region (i.e. us-west-2), simply specify the region
name with the -r or --region options:

(venv)$ awslimitchecker -r us-west-2

Assume a Role in Another Account with STS

To assume the “foobar” role in account 123456789012 in region us-west-1,
specify the -r / --region option as well as the -A / --sts-account-id
and -R / --sts-account-role options:

(venv)$ awslimitchecker -r us-west-1 -A 123456789012 -R foobar

If you also need to specify an external_id of “myid”, you can do that with the
-E / --external-id options:

(venv)$ awslimitchecker -r us-west-1 -A 123456789012 -R foobar -E myid

Please note that this assumes that you already have STS configured and working
between your account and the 123456789012 destination account; see the
documentation [http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html] for further information.

Python Usage

The full feature set of awslimitchecker is available through the Python API.
This page attempts to document some examples of usage, but the best resources are
runner, the command line wrapper, and the
API documentation.

Full Jenkins Example

A full example of a wrapper script with limit and threshold overrides, and a Jenkins job to run it,
is available in the docs/examples directory of awslimitchecker.

See docs/examples/README.rst on GitHub [https://github.com/jantman/awslimitchecker/blob/master/docs/examples/README.rst].

Simple Examples

Many of these examples use pprint [https://docs.python.org/3/library/pprint.html#module-pprint] to make output a bit nicer.

Instantiating the Class

Here we import and instantiate the AwsLimitChecker class; note that we also setup
Python’s logging [https://docs.python.org/3/library/logging.html#module-logging] module, which is used by awslimitchecker.
We also import pprint [https://docs.python.org/3/library/pprint.html#module-pprint] to make the output nicer.

>>> import logging
>>> logging.basicConfig()
>>> logger = logging.getLogger()
>>>
>>> from awslimitchecker.checker import AwsLimitChecker
>>> c = AwsLimitChecker()

Specifying a Region

To specify a region (“us-west-2” in this example), specify it as the region string
parameter to the class constructor:

>>> import logging
>>> logging.basicConfig()
>>> logger = logging.getLogger()
>>>
>>> from awslimitchecker.checker import AwsLimitChecker
>>> c = AwsLimitChecker(region='us-west-2')

Refreshing Trusted Advisor Check Results

Trusted Advisor check refresh behavior is controlled by the ta_refresh_mode
and ta_refresh_timeout parameters on the AwsLimitChecker
constructor, which are passed through to the TrustedAdvisor
constructor. See Internals - Trusted Advisor
for details of their possible values and meanings.

The below example shows constructing an AwsLimitChecker
class that will refresh Trusted Advisor limit checks only if their data is at least
6 hours (21600 seconds) old, and will allow up to 30 minutes (1800 seconds) for
the refresh to complete (if it times out, awslimitchecker will continue on with
the old data):

>>> import logging
>>> logging.basicConfig()
>>> logger = logging.getLogger()
>>>
>>> from awslimitchecker.checker import AwsLimitChecker
>>> c = AwsLimitChecker(ta_refresh_mode=21600, ta_refresh_timeout=1800)

Assuming a Role with STS

To check limits for another account using a Role assumed via STS [http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html],
specify the region, account_id and account_role parameters to the class constructor. If an external ID is needed,
this can be specified by the external_id parameter. All are strings:

>>> import logging
>>> logging.basicConfig()
>>> logger = logging.getLogger()
>>>
>>> from awslimitchecker.checker import AwsLimitChecker
>>> c = AwsLimitChecker(
>>> region='us-west-2',
>>> account_id='012345678901',
>>> account_role='myRoleName',
>>> external_id='myid'
>>>)

Setting a Limit Override

Override EC2’s “EC2-Classic Elastic IPs” limit from its default to 20,
using set_limit_override().

>>> c.set_limit_override('EC2', 'EC2-Classic Elastic IPs', 20)

Setting a Threshold Override

awslimitchecker has two sets of thresholds, warning and critical (intended to be used to
trigger different levels of alert/alarm or action). The default thresholds for warning and critical
are 80% and 99%, respectively; these program-wide defaults can be overridden by passing the
warning_threshold and/or critical_threshold arguments to the AwsLimitChecker
class constructor.

It is also possible to override these values on a per-limit basis, using the AwsLimitChecker
class’s set_threshold_override() (single limit’s threshold override)
and set_threshold_overrides() (dict of overrides) methods. When setting
threshold overrides, you can specify not only the percent threshold, but also a count of usage;
any limits which have a usage of more than this number will be detected as a warning or critical,
respectively.

To warn when our EC2-Classic Elastic IPs usage is above 50% (as opposed to the default of 80%)
and store a critical alert when it’s above 75% (as opposed to 99%):

>>> c.set_threshold_override('EC2', 'EC2-Classic Elastic IPs', warn_percent=50, crit_percent=75)

Another use could be to warn when certain services are used at all. As of the time of writing, the
i2.8xlarge instances cost USD $6.82/hour, or $163/day.

To report a critical status if any i2.8xlarge instances are running:

>>> c.set_threshold_override('EC2', 'Running On-Demand i2.8xlarge instances', crit_count=1)

You do not need to also override the percent thresholds. Because of how check_thresholds()
evaluates thresholds, any crossed threshold will be considered an error condition.

Checking Thresholds

To check the current usage against limits, use check_thresholds(). The
return value is a nested dict of all limits with current usage meeting or exceeding the configured thresholds.
Keys are the AWS Service names (string), values are dicts of limit name (string) to AwsLimit
instances representing the limit and its current usage.

>>> result = c.check_thresholds()
>>> pprint.pprint(result)
{'EC2': {'Magnetic volume storage (TiB)': <awslimitchecker.limit.AwsLimit object at 0x7f398db62750>,
 'Running On-Demand EC2 instances': <awslimitchecker.limit.AwsLimit object at 0x7f398db55910>,
 'Running On-Demand m3.medium instances': <awslimitchecker.limit.AwsLimit object at 0x7f398db55a10>,
 'Security groups per VPC': <awslimitchecker.limit.AwsLimit object at 0x7f398db62790>}}

Looking at one of the entries, its get_warnings() method tells us that the usage
did not exceed its warning threshold:

>>> result['EC2']['Magnetic volume storage (TiB)'].get_warnings()
[]

But its get_criticals() method tells us that it did meet or exceed the critical threshold:

>>> result['EC2']['Magnetic volume storage (TiB)'].get_criticals()
[<awslimitchecker.limit.AwsLimitUsage object at 0x7f2074dfeed0>]

We can then inspect the AwsLimitUsage instance for more information about current usage
that crossed the threshold:

In this particular case, there is no resource ID associated with the usage, because it is an aggregate
(type-, rather than resource-specific) limit:

>>> result['EC2']['Magnetic volume storage (TiB)'].get_criticals()[0].resource_id
>>>

The usage is of the EC2 Volume resource type (where one exists, we use the
CloudFormation Resource Type strings [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html] to identify resource types).

>>> result['EC2']['Magnetic volume storage (TiB)'].get_criticals()[0].aws_type
'AWS::EC2::Volume'

We can query the actual numeric usage value:

>>> pprint.pprint(result['EC2']['Magnetic volume storage (TiB)'].get_criticals()[0].get_value())
23.337

Or a string description of it:

>>> print(str(result['EC2']['Magnetic volume storage (TiB)'].get_criticals()[0]))
23.337

The “Security groups per VPC” limit also crossed thresholds, and we can see that it has one
critical usage value:

>>> len(result['EC2']['Security groups per VPC'].get_warnings())
0
>>> len(result['EC2']['Security groups per VPC'].get_criticals())
1

As this limit is per-VPC, our string representation of the current usage includes the VPC ID that
crossed the critical threshold:

>>> for usage in result['EC2']['Security groups per VPC'].get_criticals():
... print(str(usage))
...
vpc-c300b9a6=100

Disabling Trusted Advisor

To disable querying Trusted Advisor for limit information, simply call get_limits()
or check_thresholds() with use_ta=False:

>>> result = c.check_thresholds(use_ta=False)

Skipping Specific Services

You can completely disable all interaction with specific Services with the
remove_services() method. This method takes a list of
string Service names to remove from AwsLimitChecker’s internal services dict,
which will prevent those services from being queried or reported on.

To remove the Firehose and EC2 services:

c.remove_services(['Firehose', 'EC2'])

Logging

awslimitchecker uses the python logging [https://docs.python.org/3/library/logging.html#module-logging] library for logging, with module-level loggers
defined in each file. If you already have a root-level logger defined in your program and are using
a simple configuration (i.e. logging.basicConfig()), awslimitchecker logs will be emitted at
the same level as that which the root logger is configured.

Assuming you have a root-level logger defined and configured, and you only want to see awslimitchecker
log messages of WARNING level and above, you can set the level of awslimitchecker’s logger before
instantiating the class:

alc_log = logging.getLogger('awslimitchecker')
alc_log.setLevel(logging.WARNING)
checker = AwsLimitChecker()

It’s _highly_ recommended that you do not suppress log messages of WARNING or above, as these
indicate situations where the checker may not present accurate or complete results.

If your application does not define a root-level logger, this becomes a bit more complicated.
Assuming your application has a more complex configuration that uses a top-level logger ‘myapp’
with its own handlers defined, you can do something like the following. Note that this is highly
specific to your logging setup:

setup logging for awslimitchecker
alc_log = logging.getLogger('awslimitchecker')
WARNING or higher should pass through
alc_log.setLevel(logging.WARNING)
use myapp's handler(s)
for h in logging.getLogger('cm').handlers:
 alc_log.addHandler(h)
instantiate the class
checker = AwsLimitChecker()

Advanced Examples

For more examples, see docs/examples/README.rst on GitHub [https://github.com/jantman/awslimitchecker/blob/master/docs/examples/README.rst].

CI / Deployment Checks

This example checks usage, logs a message at WARNING level for any warning thresholds surpassed,
and logs a message at CRITICAL level for any critical thresholds passed. If any critical thresholds
were passed, it exits the script non-zero, i.e. to fail a CI or build job. In this example, we have
multiple critical thresholds crossed.

>>> import logging
>>> logging.basicConfig()
>>> logger = logging.getLogger()
>>>
>>> from awslimitchecker.checker import AwsLimitChecker
>>> c = AwsLimitChecker()
>>> result = c.check_thresholds()
>>>
>>> have_critical = False
>>> for service, svc_limits in result.items():
... for limit_name, limit in svc_limits.items():
... for warn in limit.get_warnings():
... logger.warning("{service} '{limit_name}' usage ({u}) exceeds "
... "warning threshold (limit={l})".format(
... service=service,
... limit_name=limit_name,
... u=str(warn),
... l=limit.get_limit(),
...)
...)
... for crit in limit.get_criticals():
... have_critical = True
... logger.critical("{service} '{limit_name}' usage ({u}) exceeds "
... "critical threshold (limit={l})".format(
... service=service,
... limit_name=limit_name,
... u=str(crit),
... l=limit.get_limit(),
...)
...)
...
CRITICAL:root:EC2 'Magnetic volume storage (TiB)' usage (23.417) exceeds critical threshold (limit=20)
CRITICAL:root:EC2 'Running On-Demand EC2 instances' usage (97) exceeds critical threshold (limit=20)
WARNING:root:EC2 'Security groups per VPC' usage (vpc-c300b9a6=96) exceeds warning threshold (limit=100)
CRITICAL:root:EC2 'Running On-Demand m3.medium instances' usage (53) exceeds critical threshold (limit=20)
CRITICAL:root:EC2 'EC2-Classic Elastic IPs' usage (5) exceeds critical threshold (limit=5)
>>> if have_critical:
... raise SystemExit(1)
...
(awslimitchecker)$ echo $?
1

Required IAM Permissions

Below is the sample IAM policy from this version of awslimitchecker, listing the IAM
permissions required for it to function correctly:

{
 "Statement": [
 {
 "Action": [
 "apigateway:GET",
 "apigateway:HEAD",
 "apigateway:OPTIONS",
 "autoscaling:DescribeAccountLimits",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeLaunchConfigurations",
 "cloudformation:DescribeAccountLimits",
 "cloudformation:DescribeStacks",
 "dynamodb:DescribeLimits",
 "dynamodb:DescribeTable",
 "dynamodb:ListTables",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAddresses",
 "ec2:DescribeInstances",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeNatGateways",
 "ec2:DescribeNetworkAcls",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeReservedInstances",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSpotDatafeedSubscription",
 "ec2:DescribeSpotFleetInstances",
 "ec2:DescribeSpotFleetRequestHistory",
 "ec2:DescribeSpotFleetRequests",
 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSpotPriceHistory",
 "ec2:DescribeSubnets",
 "ec2:DescribeVolumes",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpnGateways",
 "elasticache:DescribeCacheClusters",
 "elasticache:DescribeCacheParameterGroups",
 "elasticache:DescribeCacheSecurityGroups",
 "elasticache:DescribeCacheSubnetGroups",
 "elasticbeanstalk:DescribeApplicationVersions",
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEnvironments",
 "elasticfilesystem:DescribeFileSystems",
 "elasticloadbalancing:DescribeAccountLimits",
 "elasticloadbalancing:DescribeListeners",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeRules",
 "elasticloadbalancing:DescribeTargetGroups",
 "firehose:ListDeliveryStreams",
 "iam:GetAccountSummary",
 "rds:DescribeAccountAttributes",
 "rds:DescribeDBInstances",
 "rds:DescribeDBParameterGroups",
 "rds:DescribeDBSecurityGroups",
 "rds:DescribeDBSnapshots",
 "rds:DescribeDBSubnetGroups",
 "rds:DescribeEventSubscriptions",
 "rds:DescribeOptionGroups",
 "rds:DescribeReservedDBInstances",
 "redshift:DescribeClusterSnapshots",
 "redshift:DescribeClusterSubnetGroups",
 "s3:ListAllMyBuckets",
 "ses:GetSendQuota",
 "support:*",
 "trustedadvisor:Describe*",
 "trustedadvisor:RefreshCheck"
],
 "Effect": "Allow",
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
}

Supported Limits

Trusted Advisor Data

So long as the Service and Limit names used by Trusted Advisor (and returned
in its API responses) exactly match those shown below, all limits listed in
Trusted Advisor “Service Limit” checks should be automatically used by
awslimitchecker. The following service limits have been confirmed as being
updated from Trusted Advisor:

	CloudFormation
	Stacks

	EBS
	Active snapshots

	Active volumes

	General Purpose (SSD) volume storage (GiB)

	Magnetic volume storage (GiB)

	Provisioned IOPS

	Provisioned IOPS (SSD) storage (GiB)

	EC2
	Elastic IP addresses (EIPs)

	Running On-Demand c3.2xlarge instances

	Running On-Demand c3.4xlarge instances

	Running On-Demand c3.large instances

	Running On-Demand c3.xlarge instances

	Running On-Demand c4.2xlarge instances

	Running On-Demand c4.4xlarge instances

	Running On-Demand c4.large instances

	Running On-Demand c4.xlarge instances

	Running On-Demand m1.small instances

	Running On-Demand m3.2xlarge instances

	Running On-Demand m3.large instances

	Running On-Demand m3.medium instances

	Running On-Demand m3.xlarge instances

	Running On-Demand m4.2xlarge instances

	Running On-Demand m4.4xlarge instances

	Running On-Demand m4.large instances

	Running On-Demand m4.xlarge instances

	Running On-Demand r3.2xlarge instances

	Running On-Demand r3.4xlarge instances

	Running On-Demand r3.large instances

	Running On-Demand r3.xlarge instances

	Running On-Demand r4.large instances

	Running On-Demand t1.micro instances

	Running On-Demand t2.large instances

	Running On-Demand t2.medium instances

	Running On-Demand t2.micro instances

	Running On-Demand t2.nano instances

	Running On-Demand t2.small instances

	Running On-Demand t2.xlarge instances

	VPC Elastic IP addresses (EIPs)

	ELB
	Active load balancers

	IAM
	Groups

	Instance profiles

	Policies

	Roles

	Server certificates

	Users

	RDS
	DB Cluster Parameter Groups

	DB Clusters

	DB instances

	DB parameter groups

	DB security groups

	DB snapshots per user

	Event Subscriptions

	Max auths per security group

	Read replicas per master

	Storage quota (GB)

	Subnet Groups

	Subnets per Subnet Group

	SES
	Daily sending quota

	VPC
	Internet gateways

	VPCs

Limits Retrieved from Service APIs

The limits listed below can be retrieved directly from their Service’s
API; this information should be the most accurate, and is used with higher
precedence than anything other than explicit limit overrides:

	AutoScaling
	Auto Scaling groups

	Launch configurations

	CloudFormation
	Stacks

	DynamoDB
	Account Max Read Capacity Units

	Account Max Write Capacity Units

	Table Max Read Capacity Units

	Table Max Write Capacity Units

	EC2
	Elastic IP addresses (EIPs)

	Running On-Demand EC2 instances

	VPC Elastic IP addresses (EIPs)

	VPC security groups per elastic network interface

	ELB
	Active load balancers

	Listeners per application load balancer

	Listeners per load balancer

	Rules per application load balancer

	Target groups

	IAM
	Groups

	Instance profiles

	Policies

	Policy Versions In Use

	Roles

	Server certificates

	Users

	RDS
	DB Cluster Parameter Groups

	DB Clusters

	DB instances

	DB parameter groups

	DB security groups

	DB snapshots per user

	Event Subscriptions

	Max auths per security group

	Option Groups

	Read replicas per master

	Reserved Instances

	Storage quota (GB)

	Subnet Groups

	Subnets per Subnet Group

	SES
	Daily sending quota

Current Checks

The section below lists every limit that this version of awslimitchecker knows
how to check, and its hard-coded default value (per AWS documentation). Limits
marked with (TA) are comfirmed as being updated by Trusted Advisor.

ApiGateway

	Limit
	Default

	API keys per account
	500

	APIs per account
	60

	Client certificates per account
	60

	Custom authorizers per API
	10

	Documentation parts per API
	2000

	Resources per API
	300

	Stages per API
	10

	Usage plans per account
	300

AutoScaling

	Limit
	Default

	Auto Scaling groups (API)
	20

	Launch configurations (API)
	100

CloudFormation

	Limit
	Default

	Stacks (TA) (API)
	200

DynamoDB

	Limit
	Default

	Account Max Read Capacity Units (API)
	80000

	Account Max Write Capacity Units (API)
	80000

	Global Secondary Indexes
	5

	Local Secondary Indexes
	5

	Table Max Read Capacity Units (API)
	40000

	Table Max Write Capacity Units (API)
	40000

	Tables Per Region
	256

EBS

	Limit
	Default

	Active snapshots (TA)
	10000

	Active volumes (TA)
	5000

	Cold (HDD) volume storage (GiB)
	20480

	General Purpose (SSD) volume storage (GiB) (TA)
	20480

	Magnetic volume storage (GiB) (TA)
	20480

	Provisioned IOPS (SSD) storage (GiB) (TA)
	20480

	Provisioned IOPS (TA)
	40000

	Throughput Optimized (HDD) volume storage (GiB)
	20480

EC2

Note on On-Demand vs Reserved Instances: The EC2 limits for
“Running On-Demand” EC2 Instances apply only to On-Demand instances,
not Reserved Instances. If you list all EC2 instances that are
running in the Console or API, you’ll get back instances of all types
(On-Demand, Reserved, etc.). The value that awslimitchecker reports
for Running On-Demand Instances current usage will not match the
number of instances you see in the Console or API.

	Limit
	Default

	Elastic IP addresses (EIPs) (TA) (API)
	5

	Max active spot fleets per region
	1000

	Max launch specifications per spot fleet
	50

	Max spot instance requests per region
	20

	Max target capacity for all spot fleets in region
	5000

	Max target capacity per spot fleet
	3000

	Rules per VPC security group
	50

	Running On-Demand EC2 instances (API)
	20

	Running On-Demand c1.medium instances
	20

	Running On-Demand c1.xlarge instances
	20

	Running On-Demand c3.2xlarge instances (TA)
	20

	Running On-Demand c3.4xlarge instances (TA)
	20

	Running On-Demand c3.8xlarge instances
	20

	Running On-Demand c3.large instances (TA)
	20

	Running On-Demand c3.xlarge instances (TA)
	20

	Running On-Demand c4.2xlarge instances (TA)
	20

	Running On-Demand c4.4xlarge instances (TA)
	10

	Running On-Demand c4.8xlarge instances
	5

	Running On-Demand c4.large instances (TA)
	20

	Running On-Demand c4.xlarge instances (TA)
	20

	Running On-Demand cc2.8xlarge instances
	20

	Running On-Demand cg1.4xlarge instances
	2

	Running On-Demand cr1.8xlarge instances
	2

	Running On-Demand d2.2xlarge instances
	20

	Running On-Demand d2.4xlarge instances
	10

	Running On-Demand d2.8xlarge instances
	5

	Running On-Demand d2.xlarge instances
	20

	Running On-Demand f1.16xlarge instances
	20

	Running On-Demand f1.2xlarge instances
	20

	Running On-Demand g2.2xlarge instances
	5

	Running On-Demand g2.8xlarge instances
	2

	Running On-Demand hi1.4xlarge instances
	2

	Running On-Demand hs1.8xlarge instances
	2

	Running On-Demand i2.2xlarge instances
	8

	Running On-Demand i2.4xlarge instances
	4

	Running On-Demand i2.8xlarge instances
	2

	Running On-Demand i2.xlarge instances
	8

	Running On-Demand i3.16xlarge instances
	2

	Running On-Demand i3.2xlarge instances
	2

	Running On-Demand i3.4xlarge instances
	2

	Running On-Demand i3.8xlarge instances
	2

	Running On-Demand i3.large instances
	2

	Running On-Demand i3.xlarge instances
	2

	Running On-Demand m1.large instances
	20

	Running On-Demand m1.medium instances
	20

	Running On-Demand m1.small instances (TA)
	20

	Running On-Demand m1.xlarge instances
	20

	Running On-Demand m2.2xlarge instances
	20

	Running On-Demand m2.4xlarge instances
	20

	Running On-Demand m2.xlarge instances
	20

	Running On-Demand m3.2xlarge instances (TA)
	20

	Running On-Demand m3.large instances (TA)
	20

	Running On-Demand m3.medium instances (TA)
	20

	Running On-Demand m3.xlarge instances (TA)
	20

	Running On-Demand m4.10xlarge instances
	5

	Running On-Demand m4.16xlarge instances
	5

	Running On-Demand m4.2xlarge instances (TA)
	20

	Running On-Demand m4.4xlarge instances (TA)
	10

	Running On-Demand m4.large instances (TA)
	20

	Running On-Demand m4.xlarge instances (TA)
	20

	Running On-Demand p2.16xlarge instances
	1

	Running On-Demand p2.8xlarge instances
	1

	Running On-Demand p2.xlarge instances
	1

	Running On-Demand r3.2xlarge instances (TA)
	20

	Running On-Demand r3.4xlarge instances (TA)
	10

	Running On-Demand r3.8xlarge instances
	5

	Running On-Demand r3.large instances (TA)
	20

	Running On-Demand r3.xlarge instances (TA)
	20

	Running On-Demand r4.16xlarge instances
	20

	Running On-Demand r4.2xlarge instances
	20

	Running On-Demand r4.4xlarge instances
	20

	Running On-Demand r4.8xlarge instances
	20

	Running On-Demand r4.large instances (TA)
	20

	Running On-Demand r4.xlarge instances
	20

	Running On-Demand t1.micro instances (TA)
	20

	Running On-Demand t2.2xlarge instances
	20

	Running On-Demand t2.large instances (TA)
	20

	Running On-Demand t2.medium instances (TA)
	20

	Running On-Demand t2.micro instances (TA)
	20

	Running On-Demand t2.nano instances (TA)
	20

	Running On-Demand t2.small instances (TA)
	20

	Running On-Demand t2.xlarge instances (TA)
	20

	Running On-Demand x1.16xlarge instances
	20

	Running On-Demand x1.32xlarge instances
	20

	Security groups per VPC
	500

	VPC Elastic IP addresses (EIPs) (TA) (API)
	5

	VPC security groups per elastic network interface (API)
	5

EFS

	Limit
	Default

	File systems
	10

ELB

	Limit
	Default

	Active load balancers (TA) (API)
	20

	Listeners per application load balancer (API)
	50

	Listeners per load balancer (API)
	100

	Rules per application load balancer (API)
	100

	Target groups (API)
	3000

ElastiCache

	Limit
	Default

	Nodes
	100

	Nodes per Cluster
	20

	Parameter Groups
	20

	Security Groups
	50

	Subnet Groups
	50

	Subnets per subnet group
	20

ElasticBeanstalk

	Limit
	Default

	Application versions
	500

	Applications
	25

	Environments
	200

Firehose

	Limit
	Default

	Delivery streams per region
	20

IAM

	Limit
	Default

	Groups (TA) (API)
	100

	Instance profiles (TA) (API)
	100

	Policies (TA) (API)
	1000

	Policy Versions In Use (API)
	10000

	Roles (TA) (API)
	250

	Server certificates (TA) (API)
	20

	Users (TA) (API)
	5000

RDS

	Limit
	Default

	DB Cluster Parameter Groups (TA) (API)
	50

	DB Clusters (TA) (API)
	40

	DB instances (TA) (API)
	40

	DB parameter groups (TA) (API)
	50

	DB security groups (TA) (API)
	25

	DB snapshots per user (TA) (API)
	50

	Event Subscriptions (TA) (API)
	20

	Max auths per security group (TA) (API)
	20

	Option Groups (API)
	20

	Read replicas per master (TA) (API)
	5

	Reserved Instances (API)
	40

	Storage quota (GB) (TA) (API)
	100000

	Subnet Groups (TA) (API)
	20

	Subnets per Subnet Group (TA) (API)
	20

	VPC Security Groups
	5

Redshift

	Limit
	Default

	Redshift manual snapshots
	20

	Redshift subnet groups
	20

S3

	Limit
	Default

	Buckets
	100

SES

	Limit
	Default

	Daily sending quota (TA) (API)
	200

VPC

	Limit
	Default

	Entries per route table
	50

	Internet gateways (TA)
	5

	NAT Gateways per AZ
	5

	Network ACLs per VPC
	200

	Route tables per VPC
	200

	Rules per network ACL
	20

	Subnets per VPC
	200

	VPCs (TA)
	5

	Virtual private gateways
	5

Getting Help

If you have a quick question or need some simple assistance, you can try the
gitter.im chat channel [https://gitter.im/awslimitchecker/Lobby].

Enterprise Support Agreements and Contract Development

For Commercial or Enterprise support agreements for awslimitchecker,
or for paid as-needed feature development or bug fixes, please contact Jason
Antman at jason@jasonantman.com.

Reporting Bugs and Asking Questions

Questions, bug reports and feature requests are happily accepted via the
GitHub Issue Tracker [https://github.com/jantman/awslimitchecker/issues].
Pull requests are welcome; see the Development documentation for information
on PRs. Issues that don’t have an accompanying pull request
will be worked on as my time and priority allows, and I’ll do my best to
complete feature requests as quickly as possible. Please take into account that
I work on this project solely in my personal time, I don’t get paid to work on it
and I can’t work on it for my day job, so there may be some delay in getting
things implemented.

Guidelines for Reporting Issues

Opening a new issue on GitHub [https://github.com/jantman/awslimitchecker/issues/new]
should pre-populate the issue description with a template of the following:

Feature Requests

If your feature request is for support of a service or limit not currently
supported by awslimitchecker, you can simply title the issue add support for
<name of service, or name of service and limit> and add a simple description.
For anything else, please follow these guidelines:

	Describe in detail the feature you would like to see implemented, especially
how it would work from a user perspective and what benefits it adds. Your description
should be detailed enough to be used to determine if code written for the feature
adequately solves the problem.

	Describe one or more use cases for why this feature will be useful.

	Indicate whether or not you will be able to assist in testing pre-release
code for the feature.

Bug Reports

When reporting a bug in awslimitchecker, please provide all of the following information,
as well as any additional details that may be useful in reproducing or fixing
the issue:

	awslimitchecker version, as reported by awslimitchecker --version.

	How was awslimitchecker installed (provide as much detail as possible, ideally
the exact command used and whether it was installed in a virtualenv or not).

	The output of python --version and virtualenv --version in the environment
that awslimitchecker is running in.

	Your operating system type and version.

	The output of awslimitchecker, run with the -vv (debug-level output) flag
that shows the issue.

	The output that you expected (what’s wrong).

	If the bug/issue is related to TrustedAdvisor, which support contract your account has.

	Whether or not you are willing and able to assist in testing pre-release code
intended to fix the issue.

Development

Any and all contributions to awslimitchecker are welcome. Guidelines for submitting
code contributions in the form of pull requests on GitHub [https://github.com/jantman/awslimitchecker]
can be found below. For guidelines on submitting bug reports or feature requests,
please see the Getting Help documentation.
For any contributions that don’t fall into the above categories, please open an issue
for further assistance.

Pull Requests

Please cut all pull requests against the “develop” branch. I’ll do my best to merge them as
quickly as possible. If they pass all unit tests and have 100% coverage, it’ll certainly be
easier. I work on this project only in my personal time, so I can’t always get things merged
as quickly as I’d like. That being said, I’m committed to doing my best, and please call me
out on it if you feel like I’m not.

Pull Request Guidelines

	All pull requests should be made against the develop branch, NOT master.

	If you have not contributed to the project before, all pull requests must include
a statement that your contribution is being made under the same license as the
awslimitchecker project (or any subsequent version of that license if adopted by
awslimitchecker), may perpetually be included in and distributed with awslimitchecker,
and that you have the legal power to agree to these terms.

	Code should conform to the Guidelines below.

	If you have difficulty writing tests for the code, feel free to ask for help or
submit the PR without tests. This will increase the amount of time it takes to
get merged, but I’d rather write tests for your code than write all the code myself.

	You’ve rebuilt the documentation using tox -e docs

Installing for Development

To setup awslimitchecker for development:

	Fork the awslimitchecker [https://github.com/jantman/awslimitchecker] repository on GitHub

	Create a virtualenv to run the code in:

$ virtualenv awslimitchecker
$ cd awslimitchecker
$ source bin/activate

	Install your fork in the virtualenv as an editable git clone and install development dependencies:

$ pip install -e git+git@github.com:YOUR_NAME/awslimitchecker.git#egg=awslimitchecker
$ cd src/awslimitchecker
$ pip install -r dev/requirements_dev.txt

	Check out a new git branch. If you’re working on a GitHub issue you opened, your
branch should be called “issues/N” where N is the issue number.

Guidelines

	pep8 compliant with some exceptions (see pytest.ini)

	100% test coverage with pytest (with valid tests)

	Complete, correctly-formatted documentation for all classes, functions and methods.

	Connections to the AWS services should only be made by the class’s
connect() and
connect_resource() methods,
inherited from the Connectable
mixin.

	All modules should have (and use) module-level loggers.

	See the section on the AGPL license below.

	Commit messages should be meaningful, and reference the Issue number
if you’re working on a GitHub issue (i.e. “issue #x - <message>”). Please
refrain from using the “fixes #x” notation unless you are sure that the
the issue is fixed in that commit.

	Unlike many F/OSS projects on GitHub, there is no reason to squash your commits;
this just loses valuable history and insight into the development process,
which could prove valuable if a bug is introduced by your work. Until GitHub
fixes this [https://github.com/isaacs/github/issues/406], we’ll live with
a potentially messy git log in order to keep the history.

Adding New Limits and Checks to Existing Services

First, note that all calls to boto3 client (“low-level”) methods that return a dict response that can
include ‘NextToken’ or another pagination marker, should be called through
paginate_dict() with the appropriate parameters.

	Add a new AwsLimit instance to the return value of the
Service class’s get_limits() method. If Trusted Advisor
returns data for this limit, be sure the service and limit names match those
returned by Trusted Advisor.

	In the Service class’s find_usage() method (or a method
called by that, in the case of large or complex services), get the usage information
via self.conn and/or self.resource_conn and pass it to the appropriate AwsLimit object via its
_add_current_usage() method. For anything more than trivial
services (those with only 2-3 limits), find_usage() should be broken into
multiple methods, generally one per AWS API call.

	If the service has an API call that retrieves current limit values, and its results
include your new limit, ensure that this value is updated in the limit via its
_set_api_limit() method. This should be done in the Service
class’s _update_limits_from_api() method.

	Ensure complete test coverage for the above.

In cases where the AWS service API has a different name than what is reported
by Trusted Advisor, or legacy cases where Trusted Advisor support is retroactively
added to a limit already in awslimitchecker, you must pass the
ta_service_name and ta_limit_name parameters to the AwsLimit
constructor, specifying the string values that are returned by Trusted Advisor.

Adding New Services

All Services are sublcasses of _AwsService
using the abc [https://docs.python.org/3/library/abc.html#module-abc] module.

First, note that all calls to boto3 client (“low-level”) methods that return a dict response that can
include ‘NextToken’ or another pagination marker, should be called through
paginate_dict() with the appropriate parameters.

	The new service name should be in CamelCase, preferably one word (if not one word, it should be underscore-separated).
In awslimitchecker/services, use the addservice script; this will create a templated service class in the
current directory, and create a templated (but far from complete) unit test file in awslimitchecker/tests/services:

./addservice ServiceName

	Find all “TODO” comments in the newly-created files; these have instructions on things to change for new services.
Add yourself to the Authors section in the header if desired.

	Add an import line for the new service in awslimitchecker/services/__init__.py.

	Be sure to set the class’s api_name attribute to the correct name of the
AWS service API (i.e. the parameter passed to boto3.client [https://boto3.readthedocs.org/en/latest/reference/core/boto3.html#boto3.client]). This string can
typically be found at the top of the Service page in the boto3 docs [http://boto3.readthedocs.org/en/latest/reference/services/index.html].

	Write at least high-level tests; TDD is greatly preferred.

	Implement all abstract methods from _AwsService and any other methods you need;
small, easily-testable methods are preferred. Ensure all methods have full documentation. For simple services, you need only
to search for “TODO” in the new service class you created (#1). See Adding New Limits for further information.

	If your service has an API action to retrieve limit/quota information (i.e. DescribeAccountAttributes for EC2 and RDS), ensure
that the service class has an _update_limits_from_api() method which makes this API call and updates each relevant AwsLimit
via its _set_api_limit() method.

	Test your code; 100% test coverage is expected, and mocks should be using autospec or spec_set.

	Ensure the required_iam_permissions() method of your new class
returns a list of all IAM permissions required for it to work.

	Run all tox jobs, or at least one python version, docs and coverage.

	Commit the updated documentation to the repository.

	As there is no programmatic way to validate IAM policies, once you are done writing your service, grab the
output of awslimitchecker --iam-policy, login to your AWS account, and navigate to the IAM page.
Click through to create a new policy, paste the output of the --iam-policy command, and click the
“Validate Policy” button. Correct any errors that occur; for more information, see the AWS IAM docs on
Using Policy Validator [http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html].
It would also be a good idea to run any policy changes through the
Policy Simulator [http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html].

	Submit your pull request.

Trusted Advisor Checks

So long as the Service and Limit name strings returned by the Trusted Advisor (Support) API exactly match
how they are set on the corresponding _AwsService and AwsLimit objects, no code changes
are needed to support new limit checks from TA.

For further information, see Internals / Trusted Advisor.

Unit Testing

Testing is done via pytest [http://pytest.org/latest/], driven by tox [https://tox.readthedocs.org/].

	testing is as simple as:
	pip install tox==2.7.0

	tox

	If you want to see code coverage: tox -e cov
	this produces two coverage reports - a summary on STDOUT and a full report in the htmlcov/ directory

	If you want to pass additional arguments to pytest, add them to the tox command line after “–”. i.e., for verbose pytext output on py27 tests: tox -e py27 -- -v

Note that while boto currently doesn’t have python3 support, we still run tests against py3 to ensure that this package
is ready for it when boto is.

Integration Testing

Integration tests are automatically run in TravisCI for all non-pull request
branches. You can run them manually from your local machine using:

tox -r -e integration,integration3

These tests simply run awslimitchecker‘s CLI script for both usage and limits, for all services and each service individually. Note that this covers a very small amount of the code, as the account that I use for integration tests has virtually no resources in it.

If integration tests fail, check the required IAM permissions. The IAM user for Travis integration tests is configured via Terraform, which must be re-run after policy changes.

Building Docs

Much like the test suite, documentation is build using tox:

$ tox -e docs

Output will be in the docs/build/html directory under the project root.

AGPL License

awslimitchecker is licensed under the GNU Affero General Public License, version 3 or later [http://www.gnu.org/licenses/agpl.html].

Pursuant to Sections 5(b) [http://www.gnu.org/licenses/agpl-3.0.en.html#section5]
and 13 [http://www.gnu.org/licenses/agpl-3.0.en.html#section13] of the license,
all users of awslimitchecker - including those interacting with it remotely over
a network - have a right to obtain the exact, unmodified running source code. We
have done as much as possible to make this transparent to developers, with no additional
work needed. See the guidelines below for information.

	If you’re simply running awslimitchecker via the command line, there’s nothing to worry about;
just use it like any other software.

	If you’re using awslimitchecker in your own software in a way that allows users to interact with it over the network (i.e. in your
deployment or monitoring systems), but not modifying it, you also don’t need to do anything special; awslimitchecker will log a
WARNING-level message indicating where the source code of the currently-running version can be obtained. So long as you’ve installed
awslimitchecker via Python’s packaging system (i.e. with pip), its current version and source will be automatically detected. This
suffices for the AGPL source code offer provision, so long as it’s displayed to users and the currently-running source is unmodified.

	If you wish to modify the source code of awslimitchecker, you need to do is ensure that _get_version_info()
always returns correct and accutate information (a publicly-accessible URL to the exact version of the running source code, and a version number).
If you install your modified version directly from an editable (i.e. pip install -e), publicly-accessible Git repository, and ensure
that changes are available in the repository before they are present in the code running for your users, this should be automatically
detected by awslimitchecker and the correct URL provided. It is strongly recommended that any such repository is a fork of the
project’s original GitHub repository. It is solely your responsibility to ensure that the URL and version information presented
to users is accurate and reflects source code identical to what is running.

	If you’re distributing awslimitchecker with modifications or as part of your own software (as opposed to simply an
editable requirement that gets installed with pip), please read the license and ensure that you comply with its terms.

	If you are running awslimitchecker as part of a hosted service that users somehow interact with, please
ensure that the source code URL and version is correct and visible in the output given to users.

Handling Issues and PRs

All PRs and new work should be based off of the develop branch.

PRs can be merged if they look good, and CHANGES.rst updated after the merge.

For issues:

	Cut a issues/number branch off of develop.

	Work the issue, come up with a fix. Commit early and often, and mention “issue #x - <message>” in your commit messages.

	When you believe you have a working fix, build docs (tox -e docs) and push to origin. Ensure all Travis tests pass.

	Ensure that coverage has increased or stayed the same.

	Update CHANGES.rst for the fix; commit this with a message like “fixes #x - <message>” and push to origin.

	Open a new pull request against the develop branch for this change; once all tests pass, merge it to develop.

	Assign the “unreleased fix” label to the issue. It should be closed automatically when develop is merged to master for
a release, but this lets us track which issues have unreleased fixes.

Versioning Policy

As of version 1.0.0, awslimitchecker strives to follow semver 2.0.0 [http://semver.org/]
for versioning, with some specific clarifications:

	Major version bumps (backwards-incompatible changes):
	Any additional required IAM permissions, beyond the minimum policy from the last major version.

	Renaming (any change to the case-sensitive strings) any existing services or limits.

	Changing the signatures or argument types of any public methods.

	Any changes to direct dependencies or direct dependency version requirements.

	Any changes that would cause the documented usage examples (Python or CLI) to cease functioning.

	Minor version bumps (backwards-compatible feature additions and changes):
	Adding new limits or services that don’t require any IAM policy changes.

	New functionality that doesn’t change existing APIs or CLI arguments.

	Patch version bumps:
	Bug fixes

	Documentation, development/support tooling, or anything else that isn’t user-executed code.

This means that after 1.0.0, major version numbers will likely increase rather quickly.

Release Checklist

Note that to perform releases, you will need:

	Your Github access token exported as the GITHUB_TOKEN environment variable.

	pandoc [http://pandoc.org/] installed on your local machine and in your PATH.

	Open an issue for the release (the checklist below may help); cut a branch off develop for that issue.

	Build docs locally (tox -e localdocs) and ensure they’re current; commit any changes.

	Run dev/terraform.py in the awslimitchecker source directory to update the
integration test user’s IAM policy with what is actually being reported by the
current code.

	Ensure that Travis tests are passing in all environments.

	Ensure that test coverage is no less than the last release (ideally, 100%).

	Build docs for the branch (locally) and ensure they look correct. Commit any changes.

	Increment the version number in awslimitchecker/version.py and add version and release date to CHANGES.rst. Ensure that there are CHANGES.rst entries for all major changes since the last release, and that any breaking changes or new required IAM permissions are explicitly mentioned.

	Run dev/release.py gist to convert the CHANGES.rst entry for the current version to Markdown and upload it as a Github Gist. View the gist and ensure that the Markdown rendered properly and all links are valid. Iterate on this until the rendered version looks correct.

	Commit all changes, mention the issue in the commit, and push to GitHub.

	Confirm that README.rst renders correctly on GitHub.

	Upload package to testpypi, confirm that README.rst renders correctly.

	Make sure your ~/.pypirc file is correct (a repo called test for https://testpypi.python.org/pypi).

	rm -Rf dist

	python setup.py sdist bdist_wheel

	twine upload -r test dist/*

	Check that the README renders at https://testpypi.python.org/pypi/awslimitchecker

	Create a pull request for the release to be merged into master. Upon successful Travis build, merge it.

	Tag the release in Git, push tag to GitHub:

	tag the release with a signed tag: git tag -s -a X.Y.Z -m 'X.Y.Z released YYYY-MM-DD'

	Verify the signature on the tag, just to be sure: git tag -v X.Y.Z

	push the tag to GitHub: git push origin X.Y.Z

	Upload package to live pypi:
	twine upload dist/*

	make sure any GH issues fixed in the release were closed.

	merge master back into develop

	Run dev/release.py release to create the release on GitHub.

	Ensure that the issues are moved to Done on the waffle.io board [https://waffle.io/jantman/awslimitchecker]

	Blog, tweet, etc. about the new version.

Release Issue Template

Issue title: x.y.z Release

Issue content:

* [] Cut a branch off ``develop`` for this issue.
* [] Build docs locally (``tox -e localdocs``) and ensure they're current; commit any changes.
* [] Run ``dev/terraform.py`` in the awslimitchecker source directory to update the integration test user's IAM policy with what is actually being reported by the current code.
* [] Ensure that Travis tests are passing in all environments.
* [] Ensure that test coverage is no less than the last release (ideally, 100%).
* [] Build docs for the branch (locally) and ensure they look correct. Commit any changes.
* [] Increment the version number in awslimitchecker/version.py and add version and release date to CHANGES.rst. Ensure that there are CHANGES.rst entries for all major changes since the last release, and that any breaking changes or new required IAM permissions are explicitly mentioned.
* [] Run ``dev/release.py gist`` to convert the CHANGES.rst entry for the current version to Markdown and upload it as a Github Gist. View the gist and ensure that the Markdown rendered properly and all links are valid. Iterate on this until the rendered version looks correct.
* [] Commit all changes, mention the issue in the commit, and push to GitHub.
* [] Confirm that README.rst renders correctly on GitHub.
* [] Upload package to testpypi, confirm that README.rst renders correctly.

 * Make sure your ~/.pypirc file is correct (a repo called ``test`` for https://testpypi.python.org/pypi).
 * ``rm -Rf dist``
 * ``python setup.py sdist bdist_wheel``
 * ``twine upload -r test dist/*``
 * Check that the README renders at https://testpypi.python.org/pypi/awslimitchecker

* [] Create a pull request for the release to be merged into master. Upon successful Travis build, merge it.
* [] Continue at [#13 on the Release Checklist](http://awslimitchecker.readthedocs.io/en/develop/development.html#release-checklist).

Internals

Overall Program Flow

AwsLimitChecker provides the full and only public interface to this
project; it’s used by the awslimitchecker command line script (entry point to runner)
and should be the only portion directly used by external code.

Each AWS Service is represented by a subclass of the _AwsService abstract base
class; these Service Classes are responsible for knowing which limits exist for the service they represent, what the
default values for these limits are, querying current limits from the service’s API (if supported),
and how to check the current usage via the AWS API (boto3). When the
Service Classes are instantiated, they build a dict of all of their limits, correlating a string key (the “limit name”)
with an AwsLimit object. The Service Class constructors must not make any network
connections; connections are created lazily as needed and stored as a class attribute. This allows us to inspect the
services, limits and default limit values without ever connecting to AWS (this is also used to generate the
Supported Limits documentation automatically).

All calls to boto3 client (“low-level”) methods that return a dict response that can
include ‘NextToken’ or another pagination marker, should be called through
paginate_dict() with the appropriate parameters.

When AwsLimitChecker is instantiated, it imports services
which in turn creates instances of all awslimitchecker.services.* classes and adds them to a dict mapping the
string Service Name to the Service Class instance. These instances are used for all interaction with the services.

So, once an instance of AwsLimitChecker is created, we should have instant access
to the services and limits without any connection to AWS. This is utilized by the --list-services and
--list-defaults options for the command line client.

Trusted Advisor

When AwsLimitChecker is initialized, it also initializes an instance of
TrustedAdvisor. In get_limits(),
find_usage() and check_thresholds(), when called with
use_ta == True (the default), update_limits() is called on the TrustedAdvisor
instance.

update_limits() polls Trusted Advisor data from the Support API via
_poll(); this will retrieve the limits for all “flaggedResources” items in the
Service Limits Trusted Advisor check result for the current AWS account. It then calls
_update_services(), passing in the Trusted Advisor check results and the
dict of _AwsService objects it was called with (from AwsLimitChecker).

_update_services() iterates over the Services in the Trusted Advisor check result
and attempts to find a matching _AwsService (by string service name) in the dict passed
in from AwsLimitChecker. If a match is found, it iterates over all limits for that service
in the TA result and attempts to call the Service‘s _set_ta_limit() method.
If a matching Service is not found, or if _set_ta_limit raises a ValueError (matching Limit not found
for that Service), an error is logged.

When AwsLimitChecker initializes
TrustedAdvisor, it passes in the
self.services dictionary of all services and limits. At initialization time,
TrustedAdvisor iterates all services
and limits, and builds a new dictionary mapping the limit objects by the return
values of their ta_service_name()
and ta_limit_name() properties. This
allows limits to override the Trusted Advisor service and limit name that their
data comes from. In the default case, their service and limit names will be used
as they are set in the awslimitchecker code, and limits which have matching
Trusted Advisor data will be automatically populated.

In the TrustedAdvisor class’s
_poll() method,
_get_refreshed_check_result() is used to retrieve the
check result data from Trusted Advisor. This method also implements the check
refresh logic. See the comments in the source code for the specific logic. There
are three methods of refreshing checks (refresh modes), which are controlled
by the ta_refresh_mode parameter to TrustedAdvisor:

	If ta_refresh_mode is the string “wait”, the check will be refreshed and
awslimitchecker will poll for the refresh result every 30 seconds, waiting
for the refresh to complete (or until ta_refresh_timeout seconds have elapsed).
This is exposed via the CLI as the --ta-refresh-wait option.

	If ta_refresh_mode is an integer, it will operate like the “wait” mode above,
but only if the current result data for the check is more than ta_refresh_mode
seconds old. This is exposed via the CLI as the --ta-refresh-older option.

	If ta_refresh_mode is the string “trigger”, the check will be refreshed and
the program will continue on immediately, without waiting for the refresh to
complete; this will almost certainly result in stale check results in the current
run. However, this may be useful if you desire to keep awslimitchecker runs
short, and run it on a regular schedule (i.e. if you run awslimitchecker
every 6 hours, and are OK with Trusted Advisor check data being 6 hours old).
This is exposed via the CLI as the --ta-refresh-trigger option.

Additionally, TrustedAdvisor has a
ta_refresh_timeout parameter. If this is set to a non-None value (an integer),
refreshes of the check will time out after that number of seconds. If a timeout
occurs, a message will be logged at error level, but the program will continue
running (most likely using the old result data). This parameter is exposed via
the CLI as the --ta-refresh-timeout option.

Important: It may take 30 to 60 minutes for the Service Limits check to
refresh on large accounts. Please be aware of this when enabling the refresh
options.

Using the check refresh options will require the trustedadvisor:RefreshCheck
IAM permission.

For use via Python, these same parameters (ta_refresh_mode and ta_refresh_timeout)
are exposed as parameters on the
AwsLimitChecker constructor.

Service API Limit Information

Some services provide API calls to retrieve at least some of the current limits, such as the DescribeAccountAttributes
API calls for RDS [http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeAccountAttributes.html]
and EC2 [http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAccountAttributes.html]. Services that
support such calls should make them in a _update_limits_from_api() method, which will be automatically called from
get_limits(). The _update_limits_from_api() method should make the API call, and then
update all relevant limits via the AwsLimit class’s _set_api_limit() method.

Limit Value Precedence

The value used for a limit is the first match in the following list:

	Limit Override (set at runtime)

	API Limit

	Trusted Advisor

	Hard-coded default

Threshold Overrides

For more information on overriding thresholds, see
Python Usage / Setting a Threshold Override as well as the
documentation for AwsLimitChecker.check_thresholds() and AwsLimitChecker.set_threshold_override().

awslimitchecker

	awslimitchecker package
	Subpackages
	awslimitchecker.services package
	Submodules

	Submodules
	awslimitchecker.checker module

	awslimitchecker.connectable module

	awslimitchecker.limit module

	awslimitchecker.runner module

	awslimitchecker.trustedadvisor module

	awslimitchecker.utils module

	awslimitchecker.version module

awslimitchecker package

Subpackages

	awslimitchecker.services package
	Submodules
	awslimitchecker.services.apigateway module

	awslimitchecker.services.autoscaling module

	awslimitchecker.services.base module

	awslimitchecker.services.cloudformation module

	awslimitchecker.services.dynamodb module

	awslimitchecker.services.ebs module

	awslimitchecker.services.ec2 module

	awslimitchecker.services.efs module

	awslimitchecker.services.elasticache module

	awslimitchecker.services.elasticbeanstalk module

	awslimitchecker.services.elb module

	awslimitchecker.services.firehose module

	awslimitchecker.services.iam module

	awslimitchecker.services.rds module

	awslimitchecker.services.redshift module

	awslimitchecker.services.s3 module

	awslimitchecker.services.ses module

	awslimitchecker.services.vpc module

Submodules

	awslimitchecker.checker module

	awslimitchecker.connectable module

	awslimitchecker.limit module

	awslimitchecker.runner module

	awslimitchecker.trustedadvisor module

	awslimitchecker.utils module

	awslimitchecker.version module

awslimitchecker.services package

Submodules

	awslimitchecker.services.apigateway module

	awslimitchecker.services.autoscaling module

	awslimitchecker.services.base module

	awslimitchecker.services.cloudformation module

	awslimitchecker.services.dynamodb module

	awslimitchecker.services.ebs module

	awslimitchecker.services.ec2 module

	awslimitchecker.services.efs module

	awslimitchecker.services.elasticache module

	awslimitchecker.services.elasticbeanstalk module

	awslimitchecker.services.elb module

	awslimitchecker.services.firehose module

	awslimitchecker.services.iam module

	awslimitchecker.services.rds module

	awslimitchecker.services.redshift module

	awslimitchecker.services.s3 module

	awslimitchecker.services.ses module

	awslimitchecker.services.vpc module

awslimitchecker.services.apigateway module

	
class awslimitchecker.services.apigateway._ApigatewayService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.apigateway'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_api_keys()

	Find usage on API Keys.
Update self.limits.

	
_find_usage_apis()

	Find usage on APIs / RestAPIs, and resources that are limited per-API.
Update self.limits.

	
_find_usage_certs()

	Find usage on Client Certificates. Update self.limits.

	
_find_usage_plans()

	Find usage on Usage Plans and plans per API Key. Update self.limits.

	
api_name = 'apigateway'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'ApiGateway'

	

awslimitchecker.services.autoscaling module

	
class awslimitchecker.services.autoscaling._AutoscalingService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.autoscaling'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_update_limits_from_api()

	Query EC2’s DescribeAccountAttributes API action, and update limits
with the quotas returned. Updates self.limits.

	
api_name = 'autoscaling'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'AutoScaling'

	

awslimitchecker.services.base module

	
class awslimitchecker.services.base._AwsService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.connectable.Connectable

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset(['get_limits', 'find_usage', 'required_iam_permissions'])

	

	
__init__(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__metaclass__

	alias of ABCMeta

	
__module__ = 'awslimitchecker.services.base'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_set_ta_limit(limit_name, value)

	Set the value for the limit as reported by Trusted Advisor,
for the specified limit.

This method should only be called by TrustedAdvisor.

	Parameters:	
	limit_name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of the limit to override the value for

	value (int [https://docs.python.org/3/library/functions.html#int]) – the Trusted Advisor limit value

	Raises:	ValueError if limit_name is not known to this service

	
api_name = 'baseclass'

	

	
check_thresholds()

	Checks current usage against configured thresholds for all limits
for this service.

	Returns:	a dict of limit name to AwsLimit instance
for all limits that crossed one or more of their thresholds.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict] of AwsLimit

	
find_usage()

	Determine the current usage for each limit of this service,
and update the current_usage property of each corresponding
AwsLimit instance.

This method MUST set self._have_usage = True.

If the boto3 method being called returns a dict response that can
include ‘NextToken’ or another pagination marker, it should be called
through
paginate_dict() with the appropriate
parameters.

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

All limits must have self.warning_threshold and
self.critical_threshold passed into them.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'baseclass'

	

	
set_limit_override(limit_name, value, override_ta=True)

	Set a new limit value for the specified limit, overriding
the default. If override_ta is True, also use this value
instead of any found by Trusted Advisor. This method simply
passes the data through to the
set_limit_override()
method of the underlying AwsLimit instance.

	Parameters:	
	limit_name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of the limit to override the value for

	value (int [https://docs.python.org/3/library/functions.html#int]) – the new value to set for the limit

	override_ta (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to also override Trusted
Advisor information

	Raises:	ValueError if limit_name is not known to this service

	
set_threshold_override(limit_name, warn_percent=None, warn_count=None, crit_percent=None, crit_count=None)

	Override the default warning and critical thresholds used to evaluate
the specified limit’s usage. Theresholds can be specified as a
percentage of the limit, or as a usage count, or both.

	Parameters:	
	warn_percent (int [https://docs.python.org/3/library/functions.html#int]) – new warning threshold, percentage used

	warn_count (int [https://docs.python.org/3/library/functions.html#int]) – new warning threshold, actual count/number

	crit_percent (int [https://docs.python.org/3/library/functions.html#int]) – new critical threshold, percentage used

	crit_count (int [https://docs.python.org/3/library/functions.html#int]) – new critical threshold, actual count/number

awslimitchecker.services.cloudformation module

	
class awslimitchecker.services.cloudformation._CloudformationService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.cloudformation'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_update_limits_from_api()

	Call the service’s API action to retrieve limit/quota information, and
update AwsLimit objects in self.limits with this information.

	
api_name = 'cloudformation'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'CloudFormation'

	

awslimitchecker.services.dynamodb module

	
class awslimitchecker.services.dynamodb._DynamodbService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.dynamodb'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_dynamodb()

	calculates current usage for all DynamoDB limits

	
_update_limits_from_api()

	Query DynamoDB’s DescribeLimits API action, and update limits
with the quotas returned. Updates self.limits.

	
api_name = 'dynamodb'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'DynamoDB'

	

awslimitchecker.services.ebs module

	
class awslimitchecker.services.ebs._EbsService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.ebs'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_ebs()

	calculate usage for all EBS limits and update Limits

	
_find_usage_snapshots()

	find snapshot usage

	
_get_limits_ebs()

	Return a dict of EBS-related limits only.
This method should only be used internally by
:py:meth:~.get_limits`.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
api_name = 'ec2'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'EBS'

	

awslimitchecker.services.ec2 module

	
class awslimitchecker.services.ec2._Ec2Service(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.ec2'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_instances()

	calculate On-Demand instance usage for all types and update Limits

	
_find_usage_networking_eips()

	

	
_find_usage_networking_eni_sg()

	

	
_find_usage_networking_sgs()

	calculate usage for VPC-related things

	
_find_usage_spot_fleets()

	calculate spot fleet request usage and update Limits

	
_find_usage_spot_instances()

	calculate spot instance request usage and update Limits

	
_get_limits_instances()

	Return a dict of limits for EC2 instances only.
This method should only be used internally by
:py:meth:~.get_limits`.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_get_limits_networking()

	Return a dict of VPC-related limits only.
This method should only be used internally by
:py:meth:~.get_limits`.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_get_limits_spot()

	Return a dict of limits for spot requests only.
This method should only be used internally by
:py:meth:~.get_limits`.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_get_reserved_instance_count()

	For each availability zone, get the count of current instance
reservations of each instance type. Return as a nested
dict of AZ name to dict of instance type to reservation count.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_instance_types()

	Return a list of all known EC2 instance types

	Returns:	list of all valid known EC2 instance types

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
_instance_usage()

	Find counts of currently-running EC2 Instances
(On-Demand or Reserved) by placement (Availability
Zone) and instance type (size). Return as a nested dict
of AZ name to dict of instance type to count.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_update_limits_from_api()

	Query EC2’s DescribeAccountAttributes API action, and update limits
with the quotas returned. Updates self.limits.

	
api_name = 'ec2'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'EC2'

	

awslimitchecker.services.efs module

	
class awslimitchecker.services.efs._EfsService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.efs'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_filesystems()

	

	
api_name = 'efs'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'EFS'

	

awslimitchecker.services.elasticache module

	
class awslimitchecker.services.elasticache._ElastiCacheService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.elasticache'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_nodes()

	find usage for cache nodes

	
_find_usage_parameter_groups()

	find usage for elasticache parameter groups

	
_find_usage_security_groups()

	find usage for elasticache security groups

	
_find_usage_subnet_groups()

	find usage for elasticache subnet groups

	
api_name = 'elasticache'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'ElastiCache'

	

awslimitchecker.services.elasticbeanstalk module

	
class awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.elasticbeanstalk'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_application_versions()

	find usage for ElasticBeanstalk application verions

	
_find_usage_applications()

	find usage for ElasticBeanstalk applications

	
_find_usage_environments()

	find usage for ElasticBeanstalk environments

	
api_name = 'elasticbeanstalk'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'ElasticBeanstalk'

	

awslimitchecker.services.elb module

	
class awslimitchecker.services.elb._ElbService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.elb'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_elbv1()

	Find usage for ELBv1 / Classic ELB and update the appropriate limits.

	Returns:	number of Classic ELBs in use

	Return type:	int [https://docs.python.org/3/library/functions.html#int]

	
_find_usage_elbv2()

	Find usage for ELBv2 / Application LB and update the appropriate limits.

	Returns:	number of Application LBs in use

	Return type:	int [https://docs.python.org/3/library/functions.html#int]

	
_update_limits_from_api()

	Query ELB’s DescribeAccountLimits API action, and update limits
with the quotas returned. Updates self.limits.

	
_update_usage_for_elbv2(conn, alb_arn, alb_name)

	Update usage for a single ALB.

	Parameters:	
	conn (boto3.client [http://boto3.readthedocs.io/en/latest/reference/core/boto3.html#boto3.client]) – elbv2 API connection

	alb_arn (str [https://docs.python.org/3/library/stdtypes.html#str]) – Load Balancer ARN

	alb_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Load Balancer Name

	
api_name = 'elb'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'ELB'

	

awslimitchecker.services.firehose module

	
class awslimitchecker.services.firehose._FirehoseService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.firehose'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_delivery_streams()

	

	
api_name = 'firehose'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'Firehose'

	

awslimitchecker.services.iam module

	
class awslimitchecker.services.iam._IamService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
API_TO_LIMIT_NAME = {'Groups': 'Groups', 'Users': 'Users', 'Roles': 'Roles', 'PolicyVersionsInUse': 'Policy Versions In Use', 'ServerCertificates': 'Server certificates', 'Policies': 'Policies', 'InstanceProfiles': 'Instance profiles'}

	

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.iam'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_update_limits_from_api()

	Call the service’s API action to retrieve limit/quota information, and
update AwsLimit objects in self.limits with this information.

	
api_name = 'iam'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'IAM'

	

awslimitchecker.services.rds module

	
class awslimitchecker.services.rds._RDSService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
API_NAME_TO_LIMIT = {'DBSubnetGroups': 'Subnet Groups', 'OptionGroups': 'Option Groups', 'ReservedDBInstances': 'Reserved Instances', 'DBClusters': 'DB Clusters', 'AuthorizationsPerDBSecurityGroup': 'Max auths per security group', 'DBInstances': 'DB instances', 'ManualSnapshots': 'DB snapshots per user', 'EventSubscriptions': 'Event Subscriptions', 'DBClusterParameterGroups': 'DB Cluster Parameter Groups', 'DBSecurityGroups': 'DB security groups', 'DBParameterGroups': 'DB parameter groups', 'AllocatedStorage': 'Storage quota (GB)', 'ReadReplicasPerMaster': 'Read replicas per master', 'SubnetsPerDBSubnetGroup': 'Subnets per Subnet Group'}

	

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.rds'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_instances()

	find usage for DB Instances and related limits

	
_find_usage_security_groups()

	find usage for security groups

	
_find_usage_subnet_groups()

	find usage for subnet groups

	
_update_limits_from_api()

	Query RDS’s DescribeAccountAttributes API action, and update limits
with the quotas returned. Updates self.limits.

We ignore the usage information from the API,

	
api_name = 'rds'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'RDS'

	

awslimitchecker.services.redshift module

	
class awslimitchecker.services.redshift._RedshiftService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.redshift'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_cluster_manual_snapshots()

	

	
_find_cluster_subnet_groups()

	

	
api_name = 'redshift'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'Redshift'

	

awslimitchecker.services.s3 module

	
class awslimitchecker.services.s3._S3Service(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.s3'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
api_name = 's3'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'S3'

	

awslimitchecker.services.ses module

	
class awslimitchecker.services.ses._SesService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.ses'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_update_limits_from_api()

	Call the service’s API action to retrieve limit/quota information, and
update AwsLimit objects in self.limits with this information.

	
api_name = 'ses'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'SES'

	

awslimitchecker.services.vpc module

	
class awslimitchecker.services.vpc._VpcService(warning_threshold, critical_threshold, boto_connection_kwargs={})

	Bases: awslimitchecker.services.base._AwsService

Describes an AWS service and its limits, and provides methods to
query current utilization.

Constructors of _AwsService subclasses must not make any external
connections; these must be made lazily as needed in other methods.
_AwsService subclasses should be usable without any external network
connections.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'awslimitchecker.services.vpc'

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 30

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_find_usage_ACLs()

	find usage for ACLs

	
_find_usage_gateways()

	find usage for Internet Gateways

	
_find_usage_nat_gateways(subnet_to_az)

	find usage for NAT Gateways

	Parameters:	subnet_to_az (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dict mapping subnet ID to AZ

	
_find_usage_route_tables()

	find usage for route tables

	
_find_usage_subnets()

	find usage for Subnets; return dict of SubnetId to AZ

	
_find_usage_vpcs()

	find usage for VPCs

	
_find_usages_vpn_gateways()

	find usage of vpn gateways

	
api_name = 'ec2'

	

	
find_usage()

	Determine the current usage for each limit of this service,
and update corresponding Limit via
_add_current_usage().

	
get_limits()

	Return all known limits for this service, as a dict of their names
to AwsLimit objects.

	Returns:	dict of limit names to AwsLimit objects

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
required_iam_permissions()

	Return a list of IAM Actions required for this Service to function
properly. All Actions will be shown with an Effect of “Allow”
and a Resource of “*”.

	Returns:	list of IAM Action strings

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
service_name = 'VPC'

	

awslimitchecker.checker module

	
class awslimitchecker.checker.AwsLimitChecker(warning_threshold=80, critical_threshold=99, profile_name=None, account_id=None, account_role=None, region=None, external_id=None, mfa_serial_number=None, mfa_token=None, ta_refresh_mode=None, ta_refresh_timeout=None, check_version=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Main AwsLimitChecker class - this should be the only externally-used
portion of awslimitchecker.

Constructor builds self.services as a dict of service_name (str)
to _AwsService instance, and sets limit
thresholds.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	ta_refresh_mode (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int] or
None [https://docs.python.org/3/library/constants.html#None]) – How to handle refreshing Trusted Advisor checks;
this is either None (do not refresh at all), the string “wait”
(trigger refresh of all limit-related checks and wait for the refresh
to complete), the string “trigger” (trigger refresh of all
limit-related checks but do not wait for the refresh to complete), or
an integer, which causes any limit-related checks more than this
number of seconds old to be refreshed, waiting for the refresh to
complete. Note that “trigger” will likely result in the current run
getting stale data, but the check being refreshed in time for the
next run.

	ta_refresh_timeout (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – If ta_refresh_mode is “wait” or an
integer (any mode that will wait for the refresh to complete), if this
parameter is not None, only wait up to this number of seconds for the
refresh to finish before continuing on anyway.

	check_version (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to check for latest version of
awslimitchecker on PyPI during instantiation.

	
__dict__ = dict_proxy({'set_threshold_overrides': <function set_threshold_overrides>, '__module__': 'awslimitchecker.checker', 'get_service_names': <function get_service_names>, 'set_threshold_override': <function set_threshold_override>, 'remove_services': <function remove_services>, '_boto_conn_kwargs': <property object>, 'check_thresholds': <function check_thresholds>, '__dict__': <attribute '__dict__' of 'AwsLimitChecker' objects>, '_get_sts_token': <function _get_sts_token>, '__weakref__': <attribute '__weakref__' of 'AwsLimitChecker' objects>, '__init__': <function __init__>, 'set_limit_override': <function set_limit_override>, 'get_required_iam_policy': <function get_required_iam_policy>, 'get_version': <function get_version>, 'find_usage': <function find_usage>, 'get_limits': <function get_limits>, 'set_limit_overrides': <function set_limit_overrides>, '__doc__': None, 'get_project_url': <function get_project_url>})

	

	
__init__(warning_threshold=80, critical_threshold=99, profile_name=None, account_id=None, account_role=None, region=None, external_id=None, mfa_serial_number=None, mfa_token=None, ta_refresh_mode=None, ta_refresh_timeout=None, check_version=True)

	Main AwsLimitChecker class - this should be the only externally-used
portion of awslimitchecker.

Constructor builds self.services as a dict of service_name (str)
to _AwsService instance, and sets limit
thresholds.

	Parameters:	
	warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage, for any limits without a specifically-set
threshold.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	ta_refresh_mode (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int] or
None [https://docs.python.org/3/library/constants.html#None]) – How to handle refreshing Trusted Advisor checks;
this is either None (do not refresh at all), the string “wait”
(trigger refresh of all limit-related checks and wait for the refresh
to complete), the string “trigger” (trigger refresh of all
limit-related checks but do not wait for the refresh to complete), or
an integer, which causes any limit-related checks more than this
number of seconds old to be refreshed, waiting for the refresh to
complete. Note that “trigger” will likely result in the current run
getting stale data, but the check being refreshed in time for the
next run.

	ta_refresh_timeout (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – If ta_refresh_mode is “wait” or an
integer (any mode that will wait for the refresh to complete), if this
parameter is not None, only wait up to this number of seconds for the
refresh to finish before continuing on anyway.

	check_version (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to check for latest version of
awslimitchecker on PyPI during instantiation.

	
__module__ = 'awslimitchecker.checker'

	

	
__weakref__

	list of weak references to the object (if defined)

	
_boto_conn_kwargs

	Generate keyword arguments for boto3 connection functions.

If self.account_id is defined, this will call
_get_sts_token() to get STS token credentials using
boto3.STS.Client.assume_role [https://boto3.readthedocs.org/en/latest/reference/services/sts.html#STS.Client.assume_role] and include
those credentials in the return value.

If self.profile_name is defined, this will call boto3.Session()
<http://boto3.readthedocs.io/en/latest/reference/core/session.html>
with that profile and include those credentials in the return value.

	Returns:	keyword arguments for boto3 connection functions

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_get_sts_token()

	Assume a role via STS and return the credentials.

First connect to STS via boto3.client() [http://boto3.readthedocs.io/en/latest/reference/core/boto3.html#boto3.client], then
assume a role using boto3.STS.Client.assume_role [https://boto3.readthedocs.org/en/latest/reference/services/sts.html#STS.Client.assume_role]
using self.account_id and self.account_role (and optionally
self.external_id, self.mfa_serial_number, self.mfa_token).
Return the resulting ConnectableCredentials
object.

	Returns:	STS assumed role credentials

	Return type:	ConnectableCredentials

	
check_thresholds(service=None, use_ta=True)

	Check all limits and current usage against their specified thresholds;
return all AwsLimit instances that have crossed
one or more of their thresholds.

If service is specified, the returned dict has one element,
the service name, whose value is a nested dict as described below;
otherwise it includes all known services.

The returned AwsLimit objects can be interrogated
for their limits (get_limit()) as well as
the details of usage that crossed the thresholds
(get_warnings() and
get_criticals()).

See AwsLimit.check_thresholds().

	Parameters:	
	service (list [https://docs.python.org/3/library/stdtypes.html#list]) – the name(s) of one or more service(s) to return
results for

	use_ta (bool [https://docs.python.org/3/library/functions.html#bool]) – check Trusted Advisor for information on limits

	Returns:	dict of service name (string) to nested dict
of limit name (string) to limit (AwsLimit)

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
find_usage(service=None, use_ta=True)

	For each limit in the specified service (or all services if
service is None), query the AWS API via boto3
and find the current usage amounts for that limit.

This method updates the current_usage attribute of the
AwsLimit objects for each service, which can
then be queried using get_limits().

	Parameters:	
	service (None [https://docs.python.org/3/library/constants.html#None], or list [https://docs.python.org/3/library/stdtypes.html#list] service names to get) – list of _AwsService name(s), or None
to check all services.

	use_ta (bool [https://docs.python.org/3/library/functions.html#bool]) – check Trusted Advisor for information on limits

	
get_limits(service=None, use_ta=True)

	Return all AwsLimit objects for the given
service name, or for all services if service is None.

If service is specified, the returned dict has one element,
the service name, whose value is a nested dict as described below.

	Parameters:	
	service (list [https://docs.python.org/3/library/stdtypes.html#list]) – the name(s) of one or more services to return limits for

	use_ta (bool [https://docs.python.org/3/library/functions.html#bool]) – check Trusted Advisor for information on limits

	Returns:	dict of service name (string) to nested dict
of limit name (string) to limit (AwsLimit)

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_project_url()

	Return the URL for the awslimitchecker project.

	Returns:	URL of where to find awslimitchecker

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	
get_required_iam_policy()

	Return an IAM policy granting all of the permissions needed for
awslimitchecker to fully function. This returns a dict suitable
for json serialization to a valid IAM policy.

Internally, this calls required_iam_permissions()
on each _AwsService instance.

	Returns:	dict representation of IAM Policy

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_service_names()

	Return a list of all known service names

	Returns:	list of service names

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_version()

	Return the version of awslimitchecker currently running.

	Returns:	current awslimitchecker version

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	
remove_services(services_to_remove=[])

	Remove all service names specified in services_to_remove from
self.services. This allows explicitly removing certain services from
ever being checked or otherwise handled.

By default, the various methods that work on Services (i.e.
get_limits(), find_usage() and
check_thresholds()) operate on either all known services,
or one specified service name at a time. This method allows you to
remove one or more problematic or undesirable services from the dict
of all services, and then operate on the remaining ones.

	Parameters:	services_to_remove – the name(s) of one or more services to
permanently exclude from future calls to this instance

	
set_limit_override(service_name, limit_name, value, override_ta=True)

	Set a manual override on an AWS service limits, i.e. if you
had limits increased by AWS support.

This method calls _AwsService.set_limit_override()
on the corresponding _AwsService instance.

Explicitly set limit overrides using this method will take
precedence over default limits. They will also take precedence over
limit information obtained via Trusted Advisor, unless override_ta
is set to False.

	Parameters:	
	service_name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of the service to override limit for

	limit_name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of the limit to override:

	value (int [https://docs.python.org/3/library/functions.html#int]) – the new (overridden) limit value)

	override_ta (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to use this value even if Trusted
Advisor supplies limit information

	Raises:	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if limit_name is not known to the
service instance

	
set_limit_overrides(override_dict, override_ta=True)

	Set manual overrides on AWS service limits, i.e. if you
had limits increased by AWS support. This takes a dict in
the same form as that returned by get_limits(),
i.e. service_name (str) keys to nested dict of limit_name
(str) to limit value (int) like:

{
 'EC2': {
 'Running On-Demand t2.micro Instances': 1000,
 'Running On-Demand r3.4xlarge Instances': 1000,
 }
}

Internally, for each limit override for each service in
override_dict, this method calls
_AwsService.set_limit_override() on the corresponding
_AwsService instance.

Explicitly set limit overrides using this method will take
precedence over default limits. They will also take precedence over
limit information obtained via Trusted Advisor, unless override_ta
is set to False.

	Parameters:	
	override_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dict of overrides to default limits

	override_ta (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to use this value even if Trusted
Advisor supplies limit information

	Raises:	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if limit_name is not known to the
service instance

	
set_threshold_override(service_name, limit_name, warn_percent=None, warn_count=None, crit_percent=None, crit_count=None)

	Set a manual override on the threshold (used for determining
warning/critical status) for a specific limit. See
AwsLimitChecker for information on Warning and
Critical thresholds.

See AwsLimit.set_threshold_override().

	Parameters:	
	service_name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of the service to override limit for

	limit_name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of the limit to override:

	warn_percent (int [https://docs.python.org/3/library/functions.html#int]) – new warning threshold, percentage used

	warn_count (int [https://docs.python.org/3/library/functions.html#int]) – new warning threshold, actual count/number

	crit_percent (int [https://docs.python.org/3/library/functions.html#int]) – new critical threshold, percentage used

	crit_count (int [https://docs.python.org/3/library/functions.html#int]) – new critical threshold, actual count/number

	
set_threshold_overrides(override_dict)

	Set manual overrides on the threshold (used for determining
warning/critical status) a dict of limits. See
AwsLimitChecker for information on Warning and
Critical thresholds.

Dict is composed of service name keys (string) to dict of
limit names (string), to dict of threshold specifications.
Each threhold specification dict can contain keys ‘warning’
or ‘critical’, each having a value of a dict containing
keys ‘percent’ or ‘count’, to an integer value.

Example:

{
 'EC2': {
 'SomeLimit': {
 'warning': {
 'percent': 80,
 'count': 8,
 },
 'critical': {
 'percent': 90,
 'count': 9,
 }
 }
 }
}

See AwsLimit.set_threshold_override().

	Parameters:	override_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – nested dict of threshold overrides

awslimitchecker.connectable module

	
class awslimitchecker.connectable.Connectable

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mix-in helper class for connecting to AWS APIs. Centralizes logic of
connecting via regions and/or STS.

	
__dict__ = dict_proxy({'__module__': 'awslimitchecker.connectable', '__doc__': '\n Mix-in helper class for connecting to AWS APIs. Centralizes logic of\n connecting via regions and/or STS.\n ', 'connect': <function connect>, '__dict__': <attribute '__dict__' of 'Connectable' objects>, '__weakref__': <attribute '__weakref__' of 'Connectable' objects>, 'connect_resource': <function connect_resource>})

	

	
__module__ = 'awslimitchecker.connectable'

	

	
__weakref__

	list of weak references to the object (if defined)

	
connect()

	Connect to an AWS API via boto3 low-level client and set self.conn
to the boto3.client [https://boto3.readthedocs.org/en/latest/reference/core/boto3.html#boto3.client] object
(a botocore.client.* instance). If self.conn is not None,
do nothing. This connects to the API name given by self.api_name.

	Returns:	None

	
connect_resource()

	Connect to an AWS API via boto3 high-level resource connection and set
self.resource_conn to the boto3.resource [https://boto3.readthedocs.org/en/latest/reference/core/boto3.html#boto3.resource] object
(a boto3.resources.factory.*.ServiceResource instance).
If self.resource_conn is not None,
do nothing. This connects to the API name given by self.api_name.

	Returns:	None

	
class awslimitchecker.connectable.ConnectableCredentials(creds_dict)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

boto’s (2.x) boto.sts.STSConnection.assume_role() [http://boto.readthedocs.io/en/latest/ref/sts.html#boto.sts.STSConnection.assume_role] returns a
boto.sts.credentials.Credentials [http://boto.readthedocs.io/en/latest/ref/sts.html#boto.sts.credentials.Credentials] object, but boto3’s
boto3.sts.STSConnection.assume_role [https://boto3.readthedocs.org/en/latest/reference/services/sts.html#STS.Client.assume_role] just returns
a dict. This class provides a compatible interface for boto3.

We also maintain an account_id attribute that can be set to the
account ID, to ensure that credentials are updated when switching accounts.

	
__dict__ = dict_proxy({'__dict__': <attribute '__dict__' of 'ConnectableCredentials' objects>, '__module__': 'awslimitchecker.connectable', '__weakref__': <attribute '__weakref__' of 'ConnectableCredentials' objects>, '__doc__': "\n boto's (2.x) :py:meth:`boto.sts.STSConnection.assume_role` returns a\n :py:class:`boto.sts.credentials.Credentials` object, but boto3's\n `boto3.sts.STSConnection.assume_role <https://boto3.readthedocs.org/en/\n latest/reference/services/sts.html#STS.Client.assume_role>`_ just returns\n a dict. This class provides a compatible interface for boto3.\n\n We also maintain an ``account_id`` attribute that can be set to the\n account ID, to ensure that credentials are updated when switching accounts.\n ", '__init__': <function __init__>})

	

	
__init__(creds_dict)

	

	
__module__ = 'awslimitchecker.connectable'

	

	
__weakref__

	list of weak references to the object (if defined)

awslimitchecker.limit module

	
class awslimitchecker.limit.AwsLimit(name, service, default_limit, def_warning_threshold, def_critical_threshold, limit_type=None, limit_subtype=None, ta_service_name=None, ta_limit_name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Describes one specific AWS service limit, as well as its
current utilization, default limit, thresholds, and any
Trusted Advisor information about this limit.

	Parameters:	
	name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of this limit (may contain spaces);
if possible, this should be the name used by AWS, i.e. TrustedAdvisor

	service (_AwsService) – the _AwsService class that
this limit is for

	default_limit (int [https://docs.python.org/3/library/functions.html#int]) – the default value of this limit for new accounts

	def_warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage.

	def_critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage.

	limit_type – the type of resource this limit describes, specified
as one of the type names used in
CloudFormation [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html] # noqa
such as “AWS::EC2::Instance” or “AWS::RDS::DBSubnetGroup”.

	limit_subtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – resource sub-type for this limit, if applicable,
such as “t2.micro” or “SecurityGroup”

	ta_service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The service name returned by Trusted Advisor
for this limit, if different from the name of service

	ta_limit_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The limit name returned by Trusted Advisor for
this limit, if different from name.

	Raises:	ValueError

	
__dict__ = dict_proxy({'__module__': 'awslimitchecker.limit', 'get_current_usage_str': <function get_current_usage_str>, 'check_thresholds': <function check_thresholds>, 'ta_service_name': <property object>, 'get_limit': <function get_limit>, '_set_ta_unlimited': <function _set_ta_unlimited>, '__dict__': <attribute '__dict__' of 'AwsLimit' objects>, '_get_thresholds': <function _get_thresholds>, '_add_current_usage': <function _add_current_usage>, '__init__': <function __init__>, 'ta_limit_name': <property object>, 'set_limit_override': <function set_limit_override>, 'get_criticals': <function get_criticals>, '_set_ta_limit': <function _set_ta_limit>, '__weakref__': <attribute '__weakref__' of 'AwsLimit' objects>, '_set_api_limit': <function _set_api_limit>, 'get_current_usage': <function get_current_usage>, 'set_threshold_override': <function set_threshold_override>, '_reset_usage': <function _reset_usage>, 'get_limit_source': <function get_limit_source>, 'get_warnings': <function get_warnings>, '__doc__': None})

	

	
__init__(name, service, default_limit, def_warning_threshold, def_critical_threshold, limit_type=None, limit_subtype=None, ta_service_name=None, ta_limit_name=None)

	Describes one specific AWS service limit, as well as its
current utilization, default limit, thresholds, and any
Trusted Advisor information about this limit.

	Parameters:	
	name (string [https://docs.python.org/3/library/string.html#module-string]) – the name of this limit (may contain spaces);
if possible, this should be the name used by AWS, i.e. TrustedAdvisor

	service (_AwsService) – the _AwsService class that
this limit is for

	default_limit (int [https://docs.python.org/3/library/functions.html#int]) – the default value of this limit for new accounts

	def_warning_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default warning threshold, as an
integer percentage.

	def_critical_threshold (int [https://docs.python.org/3/library/functions.html#int]) – the default critical threshold, as an
integer percentage.

	limit_type – the type of resource this limit describes, specified
as one of the type names used in
CloudFormation [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html] # noqa
such as “AWS::EC2::Instance” or “AWS::RDS::DBSubnetGroup”.

	limit_subtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – resource sub-type for this limit, if applicable,
such as “t2.micro” or “SecurityGroup”

	ta_service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The service name returned by Trusted Advisor
for this limit, if different from the name of service

	ta_limit_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The limit name returned by Trusted Advisor for
this limit, if different from name.

	Raises:	ValueError

	
__module__ = 'awslimitchecker.limit'

	

	
__weakref__

	list of weak references to the object (if defined)

	
_add_current_usage(value, resource_id=None, aws_type=None)

	Add a new current usage value for this limit.

Creates a new AwsLimitUsage instance and
appends it to the internal list. If more than one usage value
is given to this service, they should have id and
aws_type set.

This method should only be called from the _AwsService
instance that created and manages this Limit.

	Parameters:	
	value (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the numeric usage value

	resource_id (string [https://docs.python.org/3/library/string.html#module-string]) – If there can be multiple usage values for one limit,
an AWS ID for the resource this instance describes

	aws_type (string [https://docs.python.org/3/library/string.html#module-string]) – if id is not None, the AWS resource type
that ID represents. As a convention, we use the AWS Resource
Type names used by
CloudFormation [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html] # noqa

	
_get_thresholds()

	Get the warning and critical thresholds for this Limit.

Return type is a 4-tuple of:

	warning integer (usage) threshold, or None

	warning percent threshold

	critical integer (usage) threshold, or None

	critical percent threshold

	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
_reset_usage()

	Discard all current usage data.

	
_set_api_limit(limit_value)

	Set the value for the limit as reported by the service’s API.

This method should only be called from the Service class.

	Parameters:	limit_value (int [https://docs.python.org/3/library/functions.html#int]) – the API limit value

	
_set_ta_limit(limit_value)

	Set the value for the limit as reported by Trusted Advisor.

This method should only be called by TrustedAdvisor.

	Parameters:	limit_value (int [https://docs.python.org/3/library/functions.html#int]) – the Trusted Advisor limit value

	
_set_ta_unlimited()

	Set state to indicate that TrustedAdvisor reports this limit as
having no maximum (unlimited).

This method should only be called by TrustedAdvisor.

	
check_thresholds()

	Check this limit’s current usage against the specified default
thresholds, and any custom theresholds that have been set on the
class instance. Return True if usage is within thresholds, or false if
warning or critical thresholds have been surpassed.

This method sets internal variables in this instance which can be
queried via get_warnings() and get_criticals()
to obtain further details about the thresholds that were crossed.

Note This function returns False if any thresholds were crossed.
Please be aware of this when setting threshold overrides to suppress
alerts. Each threshold (warn_percent, warn_count,
crit_percent, crit_count) that has been set is evaluated
individually and the result appended to a list of warnings or criticals,
respectively. If any of these evaluations failed, the method returns
False.

	Returns:	False if any thresholds were crossed, True otherwise

	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_criticals()

	Return a list of AwsLimitUsage instances that
crossed the critical threshold. These objects are comparable
and can be sorted.

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_current_usage()

	Get the current usage for this limit, as a list of
AwsLimitUsage instances.

	Returns:	list of current usage values

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list] of AwsLimitUsage

	
get_current_usage_str()

	Get the a string describing the current usage for this limit.

If no usage has been added for this limit, the result will be
“<unknown>”.

If the limit has only one current usage instance, this will be
that instance’s __str__() value.

If the limit has more than one current usage instance, this
will be the a string of the form max: X (Y) where X is
the __str__() value of the instance
with the maximum value, and Y is a comma-separated list
of the __str__() values of all usage
instances in ascending order.

	Returns:	representation of current usage

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	
get_limit()

	Returns the effective limit value for this Limit,
taking into account limit overrides and Trusted
Advisor data. None is returned for limits that are
explicitly unlimited.

	Returns:	effective limit value, int or None

	
get_limit_source()

	Return SOURCE_DEFAULT if
get_limit() returns the default limit,
SOURCE_OVERRIDE if it returns a
manually-overridden limit,
SOURCE_TA if it returns a limit from
Trusted Advisor, or SOURCE_API
if it returns a limit retrieved from the service’s API.

	Returns:	one of SOURCE_DEFAULT,
SOURCE_OVERRIDE, or
SOURCE_TA, or
SOURCE_API

	Return type:	int [https://docs.python.org/3/library/functions.html#int]

	
get_warnings()

	Return a list of AwsLimitUsage instances that
crossed the warning threshold. These objects are comparable
and can be sorted.

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
set_limit_override(limit_value, override_ta=True)

	Set a new value for this limit, to override the default
(such as when AWS Support has increased a limit of yours).
If override_ta is True, this value will also supersede
any found through Trusted Advisor.

	Parameters:	
	limit_value (int [https://docs.python.org/3/library/functions.html#int]) – the new limit value

	override_ta (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to also override Trusted
Advisor information

	
set_threshold_override(warn_percent=None, warn_count=None, crit_percent=None, crit_count=None)

	Override the default warning and critical thresholds used to evaluate
this limit’s usage. Theresholds can be specified as a percentage
of the limit, or as a usage count, or both.

Note: The percent thresholds (warn_percent and crit_percent)
have default values that are set globally for awslimitchecker, unlike
the count thresholds. When setting threshold overrides to quiet or
suppress alerts for a limit, you must set the percent thresholds.
If you only set overrides for the count thresholds, the percent
thresholds will continue to be evaluated at their awslimitchecker-wide
default, and likely prevent alerts from being suppressed.

see check_thresholds() for further information on threshold
evaluation.

	Parameters:	
	warn_percent (int [https://docs.python.org/3/library/functions.html#int]) – new warning threshold, percentage used

	warn_count (int [https://docs.python.org/3/library/functions.html#int]) – new warning threshold, actual count/number

	crit_percent (int [https://docs.python.org/3/library/functions.html#int]) – new critical threshold, percentage used

	crit_count (int [https://docs.python.org/3/library/functions.html#int]) – new critical threshold, actual count/number

	
ta_limit_name

	Return the effective Trusted Advisor limit name that this limit’s
data will have. This should be self._ta_limit_name if set,
otherwise self.name.

	Returns:	Trusted Advisor limit data name

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ta_service_name

	Return the effective Trusted Advisor service name that this limit’s
data will have. This should be self._ta_service_name if set,
otherwise the name of self.service.

	Returns:	Trusted Advisor service data name

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class awslimitchecker.limit.AwsLimitUsage(limit, value, resource_id=None, aws_type=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This object describes the usage of an AWS resource, with the capability
of containing information about the resource beyond an integer usage.

The simplest case is an account- / region-wide count, such as the
number of running EC2 Instances, in which case a simple integer value
is sufficient. In this case, the AwsLimit would have one
instance of this class for the single value.

In more complex cases, such as the “Subnets per VPC”, the limit is
applied by AWS on multiple resources (once per VPC). In this case,
the AwsLimit should have one instance of this class
per VPC, so we can determine which VPCs have crossed thresholds.

AwsLimitUsage objects are comparable based on their numeric value.

	Parameters:	
	limit (AwsLimit) – the AwsLimit that this instance describes

	value (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the numeric usage value

	resource_id (string [https://docs.python.org/3/library/string.html#module-string]) – If there can be multiple usage values for one limit,
an AWS ID for the resource this instance describes

	aws_type (string [https://docs.python.org/3/library/string.html#module-string]) – if id is not None, the AWS resource type
that ID represents. As a convention, we use the AWS Resource
Type names used by
CloudFormation [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html] # noqa

	
__dict__ = dict_proxy({'__ne__': <function __ne__>, '__module__': 'awslimitchecker.limit', '__weakref__': <attribute '__weakref__' of 'AwsLimitUsage' objects>, '__str__': <function __str__>, 'get_value': <function get_value>, '__init__': <function __init__>, '__gt__': <function __gt__>, '__dict__': <attribute '__dict__' of 'AwsLimitUsage' objects>, '__lt__': <function __lt__>, '__eq__': <function __eq__>, '__doc__': None, '__ge__': <function __ge__>})

	

	
__eq__(other)

	

	
__ge__(other)

	

	
__gt__(other)

	

	
__init__(limit, value, resource_id=None, aws_type=None)

	This object describes the usage of an AWS resource, with the capability
of containing information about the resource beyond an integer usage.

The simplest case is an account- / region-wide count, such as the
number of running EC2 Instances, in which case a simple integer value
is sufficient. In this case, the AwsLimit would have one
instance of this class for the single value.

In more complex cases, such as the “Subnets per VPC”, the limit is
applied by AWS on multiple resources (once per VPC). In this case,
the AwsLimit should have one instance of this class
per VPC, so we can determine which VPCs have crossed thresholds.

AwsLimitUsage objects are comparable based on their numeric value.

	Parameters:	
	limit (AwsLimit) – the AwsLimit that this instance describes

	value (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the numeric usage value

	resource_id (string [https://docs.python.org/3/library/string.html#module-string]) – If there can be multiple usage values for one limit,
an AWS ID for the resource this instance describes

	aws_type (string [https://docs.python.org/3/library/string.html#module-string]) – if id is not None, the AWS resource type
that ID represents. As a convention, we use the AWS Resource
Type names used by
CloudFormation [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html] # noqa

	
__lt__(other)

	

	
__module__ = 'awslimitchecker.limit'

	

	
__ne__(other)

	

	
__str__()

	Return a string representation of this object.

If id is not set, return value formatted as a string;
otherwise, return a string of the format id=value.

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	
__weakref__

	list of weak references to the object (if defined)

	
get_value()

	Get the current usage value

	Returns:	current usage value

	Return type:	int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]

	
awslimitchecker.limit.SOURCE_API = 3

	indicates a limit value that came from the service’s API

	
awslimitchecker.limit.SOURCE_DEFAULT = 0

	indicates a limit value that came from hard-coded defaults in awslimitchecker

	
awslimitchecker.limit.SOURCE_OVERRIDE = 1

	indicates a limit value that came from user-defined limit overrides

	
awslimitchecker.limit.SOURCE_TA = 2

	indicates a limit value that came from Trusted Advisor

awslimitchecker.runner module

	
class awslimitchecker.runner.Runner

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
__dict__ = dict_proxy({'__module__': 'awslimitchecker.runner', 'color_output': <function color_output>, 'parse_args': <function parse_args>, '__weakref__': <attribute '__weakref__' of 'Runner' objects>, 'list_services': <function list_services>, 'check_thresholds': <function check_thresholds>, 'console_entry_point': <function console_entry_point>, '__doc__': None, 'list_defaults': <function list_defaults>, 'iam_policy': <function iam_policy>, '__dict__': <attribute '__dict__' of 'Runner' objects>, 'set_limit_overrides': <function set_limit_overrides>, 'list_limits': <function list_limits>, 'print_issue': <function print_issue>, '__init__': <function __init__>, 'show_usage': <function show_usage>})

	

	
__init__()

	

	
__module__ = 'awslimitchecker.runner'

	

	
__weakref__

	list of weak references to the object (if defined)

	
check_thresholds()

	

	
color_output(s, color)

	

	
console_entry_point()

	

	
iam_policy()

	

	
list_defaults()

	

	
list_limits()

	

	
list_services()

	

	
parse_args(argv)

	parse arguments/options

	Parameters:	argv (list [https://docs.python.org/3/library/stdtypes.html#list]) – argument list to parse, usually sys.argv[1:]

	Returns:	parsed arguments

	Return type:	argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	
print_issue(service_name, limit, crits, warns)

	

	Parameters:	
	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the service

	limit (AwsLimit) – the Limit this relates to

	crits – the specific usage values that crossed the critical
threshold

	crits – the specific usage values that crossed the warning
threshold

	
set_limit_overrides(overrides)

	

	
show_usage()

	

	
awslimitchecker.runner.console_entry_point()

	

awslimitchecker.trustedadvisor module

	
class awslimitchecker.trustedadvisor.TrustedAdvisor(all_services, boto_connection_kwargs, ta_refresh_mode=None, ta_refresh_timeout=None)

	Bases: awslimitchecker.connectable.Connectable

Class to contain all TrustedAdvisor-related logic.

	Parameters:	
	all_services (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – AwsLimitChecker services
dictionary.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	ta_refresh_mode (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int] or
None [https://docs.python.org/3/library/constants.html#None]) – How to handle refreshing Trusted Advisor checks;
this is either None (do not refresh at all), the string “wait”
(trigger refresh of all limit-related checks and wait for the refresh
to complete), the string “trigger” (trigger refresh of all
limit-related checks but do not wait for the refresh to complete), or
an integer, which causes any limit-related checks more than this
number of seconds old to be refreshed, waiting for the refresh to
complete. Note that “trigger” will likely result in the current run
getting stale data, but the check being refreshed in time for the
next run.

	ta_refresh_timeout (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – If ta_refresh_mode is “wait” or an
integer (any mode that will wait for the refresh to complete), if this
parameter is not None, only wait up to this number of seconds for the
refresh to finish before continuing on anyway.

	
__init__(all_services, boto_connection_kwargs, ta_refresh_mode=None, ta_refresh_timeout=None)

	Class to contain all TrustedAdvisor-related logic.

	Parameters:	
	all_services (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – AwsLimitChecker services
dictionary.

	profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a profile in the cross-SDK
shared credentials file [https://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file] for boto3 to
retrieve AWS credentials from.

	account_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS Account ID [http://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html]
(12-digit string, currently numeric) for the account to connect to
(destination) via STS

	account_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an
IAM Role [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html]
(in the destination account) to assume

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region name to connect to

	external_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the External ID [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html]
string to use when assuming a role via STS.

	mfa_serial_number (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Serial Number string to
use when assuming a role via STS.

	mfa_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) the MFA Token string to use when
assuming a role via STS.

	ta_refresh_mode (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int] or
None [https://docs.python.org/3/library/constants.html#None]) – How to handle refreshing Trusted Advisor checks;
this is either None (do not refresh at all), the string “wait”
(trigger refresh of all limit-related checks and wait for the refresh
to complete), the string “trigger” (trigger refresh of all
limit-related checks but do not wait for the refresh to complete), or
an integer, which causes any limit-related checks more than this
number of seconds old to be refreshed, waiting for the refresh to
complete. Note that “trigger” will likely result in the current run
getting stale data, but the check being refreshed in time for the
next run.

	ta_refresh_timeout (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – If ta_refresh_mode is “wait” or an
integer (any mode that will wait for the refresh to complete), if this
parameter is not None, only wait up to this number of seconds for the
refresh to finish before continuing on anyway.

	
__module__ = 'awslimitchecker.trustedadvisor'

	

	
_can_refresh_check(check_id)

	Determine if the given check_id can be refreshed yet.

	Parameters:	check_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the Trusted Advisor check ID

	Returns:	whether or not the check can be refreshed yet

	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]

	
_get_check_result(check_id)

	Directly wrap
Support.Client.describe_trusted_advisor_check_result() [http://boto3.readthedocs.io/en/latest/reference/services/support.html#Support.Client.describe_trusted_advisor_check_result];
return a 2-tuple of the result dict and the last refresh DateTime.

	Parameters:	check_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the Trusted Advisor check ID

	Returns:	2-tuple of (result dict, last refresh DateTime). If the last
refresh time can’t be parsed from the response, the second element
will be None.

	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
_get_limit_check_id()

	Query currently-available TA checks, return the check ID and metadata
of the ‘performance/Service Limits’ check.

	Returns:	2-tuple of Service Limits TA check ID (string),
metadata (list), or (None, None).

	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
_get_refreshed_check_result(check_id)

	Given the check_id, return the dict of Trusted Advisor check
results. This handles refreshing the Trusted Advisor check, if desired,
according to self.refresh_mode and self.refresh_timeout.

	Parameters:	check_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the Trusted Advisor check ID

	Returns:	dict check result. The return value of
Support.Client.describe_trusted_advisor_check_result() [http://boto3.readthedocs.io/en/latest/reference/services/support.html#Support.Client.describe_trusted_advisor_check_result]

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_make_ta_service_dict()

	Build our service and limits dict. This is laid out identical to
self.all_services, but keys limits by their ta_service_name
and ta_limit_name properties.

	Returns:	dict of TA service names to TA limit names to AwsLimit objects.

	
_poll()

	Poll Trusted Advisor (Support) API for limit checks.

Return a dict of service name (string) keys to nested dict vals, where
each key is a limit name and each value the current numeric limit.

e.g.:

{
 'EC2': {
 'SomeLimit': 10,
 }
}

	
_poll_for_refresh(check_id)

	Given a Trusted Advisor check_id that has just been refreshed, poll
until the refresh is complete. Once complete, return the check result.

	Parameters:	check_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the Trusted Advisor check ID

	Returns:	dict check result. The return value of
Support.Client.describe_trusted_advisor_check_result() [http://boto3.readthedocs.io/en/latest/reference/services/support.html#Support.Client.describe_trusted_advisor_check_result]

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_update_services(ta_results)

	Given a dict of TrustedAdvisor check results from _poll()
and a dict of Service objects passed in to update_limits(),
updated the TrustedAdvisor limits for all services.

	Parameters:	
	ta_results (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – results returned by _poll()

	services (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dict of service names to _AwsService objects

	
api_name = 'support'

	

	
service_name = 'TrustedAdvisor'

	

	
update_limits()

	Poll ‘Service Limits’ check results from Trusted Advisor, if possible.
Iterate over all AwsLimit objects for the given services
and update their limits from TA if present in TA checks.

	Parameters:	services (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dict of service name (string) to
_AwsService objects

	
awslimitchecker.trustedadvisor.datetime_now()

	Helper function for testing; return datetime.datetime.now() [https://docs.python.org/3/library/datetime.html#datetime.datetime.now].

	Returns:	datetime.datetime.now() [https://docs.python.org/3/library/datetime.html#datetime.datetime.now]

	Return type:	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

awslimitchecker.utils module

	
class awslimitchecker.utils.StoreKeyValuePair(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Store key=value options in a dict as {‘key’: ‘value’}.

Supports specifying the option multiple times, but NOT with nargs.

See Action [https://docs.python.org/3/library/argparse.html#argparse.Action].

	
__call__(parser, namespace, values, option_string=None)

	

	
__init__(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	

	
__module__ = 'awslimitchecker.utils'

	

	
awslimitchecker.utils._get_dict_value_by_path(d, path)

	Given a dict (d) and a list specifying the hierarchical path to a key
in that dict (path), return the value at that path or None if it does
not exist.

	Parameters:	
	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dict to search in

	path (list [https://docs.python.org/3/library/stdtypes.html#list]) – the path to the key in the dict

	
awslimitchecker.utils._get_latest_version()

	Attempt to retrieve the latest awslimitchecker version from PyPI, timing
out after 4 seconds. If the version can be retrieved and is greater than
the currently running version, return it as a string. If the version cannot
be retrieved or is not greater than the currently running version, return
None.

This function MUST not ever raise an exception.

	Returns:	latest version from PyPI, if newer than current version

	Return type:	str or None

	
awslimitchecker.utils._set_dict_value_by_path(d, val, path)

	Given a dict (d), a value (val), and a list specifying the
hierarchical path to a key in that dict (path), set the value in d
at path to val.

	Parameters:	
	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dict to search in

	path (list [https://docs.python.org/3/library/stdtypes.html#list]) – the path to the key in the dict

	Raises:	TypeError if the path is too short

	Returns:	the modified dict

	
awslimitchecker.utils.dict2cols(d, spaces=2, separator=' ')

	Take a dict of string keys and string values, and return a string with
them formatted as two columns separated by at least spaces number of
separator characters.

	Parameters:	
	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dict of string keys, string values

	spaces (int [https://docs.python.org/3/library/functions.html#int]) – number of spaces to separate columns by

	separator (string [https://docs.python.org/3/library/string.html#module-string]) – character to fill in between columns

	
awslimitchecker.utils.paginate_dict(function_ref, *argv, **kwargs)

	Paginate through a query that returns a dict result, and return the
combined result.

Note that this function requires some special kwargs to be passed in:

	__alc_marker_path__ - The dictionary path to the Marker for the next
result set. If this path does not exist, the raw result will be returned.

	__alc_data_path__ - The dictionary path to the list containing the query
results. This will be updated with the results of subsequent queries.

	__alc_marker_param__ - The parameter name to pass to function_ref
with the marker value.

These paths should be lists, in a form usable by
_get_dict_value_by_path().

	Parameters:	
	function_ref (function) – the function to call

	argv (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the parameters to pass to the function

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to pass to the function

awslimitchecker.version module

	
class awslimitchecker.version.AWSLimitCheckerVersion(release, url, commit=None, tag=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
__dict__ = dict_proxy({'__module__': 'awslimitchecker.version', '__str__': <function __str__>, '__repr__': <function __repr__>, 'version_str': <property object>, '__dict__': <attribute '__dict__' of 'AWSLimitCheckerVersion' objects>, '__weakref__': <attribute '__weakref__' of 'AWSLimitCheckerVersion' objects>, '__doc__': None, '__init__': <function __init__>})

	

	
__init__(release, url, commit=None, tag=None)

	

	
__module__ = 'awslimitchecker.version'

	

	
__repr__()

	Return a representation of this object that is valid Python and will
create an idential AWSLimitCheckerVersion object.

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	
__str__()

	Human-readable string representation of this version object, in the
format: “version_str <url>”

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	
__weakref__

	list of weak references to the object (if defined)

	
version_str

	The version string for the currently-running awslimitchecker;
includes git branch and tag information.

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	
awslimitchecker.version._get_version_info()

	Returns the currently-installed awslimitchecker version, and a best-effort
attempt at finding the origin URL and commit/tag if installed from an
editable git clone.

	Returns:	awslimitchecker version

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

Changelog

1.0.0 (2017-09-21)

This release requires new IAM permissions:

	apigateway:GET

	apigateway:HEAD

	apigateway:OPTIONS

	ec2:DescribeVpnGateways

	dynamodb:DescribeLimits

	dynamodb:DescribeTable

	dynamodb:ListTables

Changes in this release:

	Issue #254 [https://github.com/jantman/awslimitchecker/issues/254] - Officially adopt SemVer for this project, and document our versioning policy.

	Issue #294 [https://github.com/jantman/awslimitchecker/issues/294] - Ignore NAT Gateways that are not in “available” or “pending” state.

	Issue #253 [https://github.com/jantman/awslimitchecker/issues/253] - Check latest awslimitchecker version on PyPI at class instantiation; log warning if a newer version is available. Add Python API and CLI options to disable this.

	Pin tox [https://tox.readthedocs.io/] version to 2.7.0 as workaround for parsing change.

	Issue #292 [https://github.com/jantman/awslimitchecker/issues/292] - Add support for API Gateway limits.

	PR #302 [https://github.com/jantman/awslimitchecker/pull/302] - Add support for VPC VPN Gateways limit. (Thanks to andrewmichael [https://github.com/andrewmichael] for the contribution.)

	Issue #280 [https://github.com/jantman/awslimitchecker/issues/280] / PR #297 [https://github.com/jantman/awslimitchecker/pull/297] - Add support for DynamoDB limits. (Thanks to saratlingamarla [https://github.com/saratlingamarla] for the contribution.)

0.11.0 (2017-08-06)

This release requires new IAM permissions:

	elasticfilesystem:DescribeFileSystems

	elasticloadbalancing:DescribeAccountLimits

	elasticloadbalancing:DescribeListeners

	elasticloadbalancing:DescribeTargetGroups

	elasticloadbalancing:DescribeRules

Changes in this release:

	Issue #287 [https://github.com/jantman/awslimitchecker/issues/287] / PR #288 [https://github.com/jantman/awslimitchecker/pull/288] - Add support for Elastic Filesystem number of filesystems limit. (Thanks to nicksantamaria [https://github.com/nicksantamaria] for the contribution.)

	Issue #268 [https://github.com/jantman/awslimitchecker/issues/268] - Add support for ELBv2 (Application Load Balancer) limits; get ELBv1 (Classic) and ELBv2 (Application) limits from the DescribeAccountLimits API calls.

0.10.0 (2017-06-25)

This release removes the ElastiCache Clusters limit, which no longer exists.

	Issue #283 [https://github.com/jantman/awslimitchecker/issues/283] - Add gitter.im chat link to README and docs.

	Issue #282 [https://github.com/jantman/awslimitchecker/issues/282] - versionfinder caused awslimitchecker to die unexpectedly on systems without a git binary on the PATH. Bump versionfinder requirement to >= 0.1.1.

	Issue #284 [https://github.com/jantman/awslimitchecker/issues/284] - Fix ElastiCache limits to reflect what AWS Support and the current documentation [http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_elasticache] say, instead of a support ticket from July 2015 [https://github.com/jantman/awslimitchecker/issues/38#issuecomment-118806921].
	Remove the “Clusters” limit, which no longer exists.

	“Nodes per Cluster” limit is Memcached only.

	Add “Subnets per subnet group” limit.

	Issue #279 [https://github.com/jantman/awslimitchecker/issues/279] - Add Github release to release process.

0.9.0 (2017-06-11)

	Issue #269 [https://github.com/jantman/awslimitchecker/issues/269] - set Trusted
Advisor limit name overrides for some RDS limits that were recently added to TA, but
with different names than what awslimitchecker uses.

	Fix bug Issue #270 [https://github.com/jantman/awslimitchecker/issues/270] - do
not count propagated routes towards the VPC “Entries per route table” limit,
per clarification in VPC service limits documentation [http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_vpc] (“This is the limit
for the number of non-propagated entries per route table.”)

	PR #276 [https://github.com/jantman/awslimitchecker/pull/276] /
Issue #275 [https://github.com/jantman/awslimitchecker/issues/275] - Add new
--skip-service CLI option and AwsLimitChecker.remove_services to allow
skipping of one or more specific services during runs. (Thanks to tamsky [https://github.com/tamsky] for this contribution.)

	PR #274 [https://github.com/jantman/awslimitchecker/pull/274] /
Issue #273 [https://github.com/jantman/awslimitchecker/issues/273] - Add support
for new i3 EC2 Instance types. (Thanks to tamsky [https://github.com/tamsky])
for this contribution.)

	Fix broken docs build due to changes Intersphinx reference to ValueError in python2 docs

	Add hack to docs/source/conf.py as workaround for https://github.com/sphinx-doc/sphinx/issues/3860

	Issue #267 [https://github.com/jantman/awslimitchecker/issues/267] - Firehose is only
available in us-east-1, us-west-2 and eu-west-1. Omit the traceback from the
log message for Firehose EndpointConnectionError and log at warning instead of error.

0.8.0 (2017-03-11)

This release includes a breaking API change. Please see the first bullet point
below. Note that once 1.0.0 is released (which should be relatively soon), such
API changes will only come with a major version increment.

This release requires new IAM permissions: redshift:DescribeClusterSnapshots and redshift:DescribeClusterSubnetGroups.

This release removes Python 3.2 support. This was deprecated in 0.7.0. As of this release,
awslimitchecker may still work on Python 3.2, but it is no longer tested and any support tickets
or bug reports specific to 3.2 will be closed.

	PR #250 [https://github.com/jantman/awslimitchecker/pull/250] - Allow the
--service command line option to accept multiple values. This is a
breaking public API change; the awslimitchecker.checker.AwsLimitChecker
awslimitchecker.checker.AwsLimitChecker.check_thresholds,
awslimitchecker.checker.AwsLimitChecker.find_usage,
and awslimitchecker.checker.AwsLimitChecker.get_limits
methods now take an optional service list keyword argument instead of a string for a
single service name.

	PR #251 [https://github.com/jantman/awslimitchecker/pull/251] - Handle GovCloud-specific edge cases; specifically, UnsupportedOperation errors
for EC2 Spot Instance-related API calls, and limits returned as 0 by the DescribeAccountAttributes EC2 API action.

	PR #249 [https://github.com/jantman/awslimitchecker/pull/249] - Add support for RedShift limits (Redshift subnet groups and Redshift manual snapshots).
This requires the redshift:DescribeClusterSnapshots and redshift:DescribeClusterSubnetGroups IAM permissions.

	Issue #259 [https://github.com/jantman/awslimitchecker/issues/259] - remove duplicates from required IAM policy returned by awslimitchecker.checker.AwsLimitChecker.get_required_iam_policy and awslimitchecker --iam-policy.

	Various TravisCI/tox build fixes:
	Fix pip caching; use default pip cache directory

	Add python 3.6 tox env and Travis env, now that it’s released

	Switch integration3 tox env from py3.4 to py3.6

	PR #256 [https://github.com/jantman/awslimitchecker/pull/256] - Add example of wrapping awslimitchecker in a script to send metrics to Prometheus [https://prometheus.io/].

	Issue #236 [https://github.com/jantman/awslimitchecker/issues/236] - Drop support for Python 3.2; stop testing under py32.

	Issue #257 [https://github.com/jantman/awslimitchecker/issues/257] - Handle ElastiCache DescribeCacheCluster responses that are missing CacheNodes key in a cluster description.

	Issue #200 [https://github.com/jantman/awslimitchecker/issues/200] - Remove EC2 Spot Instances/Fleets limits from experimental status.

	Issue #123 [https://github.com/jantman/awslimitchecker/issues/123] - Update documentation on using session tokens (Session or Federation temporary creds).

0.7.0 (2017-01-15)

This release deprecates support for Python 3.2. It will be removed in the
next release.

This release introduces support for automatically refreshing Trusted Advisor
checks on accounts that support this. If you use this new feature,
awslimitchecker will require a new permission, trustedadvisor:RefreshCheck.
See Getting Started - Trusted Advisor for further information.

	#231 [https://github.com/jantman/awslimitchecker/issues/231] - add support
for new f1, r4 and t2.(xlarge|2xlarge) instance types, introduced in November
2016.

	#230 [https://github.com/jantman/awslimitchecker/issues/230] - replace the
built-in versioncheck.py with versionfinder [http://versionfinder.readthedocs.io/en/latest/]. Remove all of the many versioncheck tests.

	#233 [https://github.com/jantman/awslimitchecker/issues/233] - refactor
tests to replace yield-based tests with parametrize, as yield-based tests are
deprecated and will be removed in pytest 4.

	#235 [https://github.com/jantman/awslimitchecker/issues/235] - Deprecate
Python 3.2 support. There don’t appear to have been any downloads on py32
in the last 6 months, and the effort to support it is too high.

	A bunch of Sphinx work to use README.rst in the generated documentation.

	Changed DEBUG-level logging format to include timestamp.

	#239 [https://github.com/jantman/awslimitchecker/issues/239] - Support
refreshing Trusted Advisor check results during the run, and optionally waiting
for refresh to finish. See
Getting Started - Trusted Advisor
for further information.

	#241 [https://github.com/jantman/awslimitchecker/issues/241] / PR #242 [https://github.com/jantman/awslimitchecker/pull/242] -
Fix default ElastiCache/Nodes limit from 50 to 100, as that’s now [http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_elasticache]
what the docs say.

	#220 [https://github.com/jantman/awslimitchecker/issues/220] / PR #243 [https://github.com/jantman/awslimitchecker/pull/243] /
PR #245 [https://github.com/jantman/awslimitchecker/pull/245] - Fix for ExpiredTokenException Errors.
awslimitchecker.connectable.credentials has been removed.
In previous releases, awslimitchecker had been using a Connectable.credentials class attribute
to store AWS API credentials and share them between Connectable subclass instances. The side-effect
of this was that AWS credentials were set at the start of the Python process and never changed. For users
taking advantage of the Python API and either using short-lived STS credentials or using long-running
or threaded implementations, the same credentials persisted for the life of the process, and would often
result in ExpiredTokenExceptions. The fix was to move
_boto_conn_kwargs [http://awslimitchecker.readthedocs.io/en/latest/awslimitchecker.checker.html#awslimitchecker.checker.AwsLimitChecker._boto_conn_kwargs]
and _get_sts_token [http://awslimitchecker.readthedocs.io/en/latest/awslimitchecker.checker.html#awslimitchecker.checker.AwsLimitChecker._get_sts_token]
from connectable [http://awslimitchecker.readthedocs.io/en/develop/awslimitchecker.connectable.html] to the top-level
AwsLimitChecker [http://awslimitchecker.readthedocs.io/en/latest/awslimitchecker.checker.html#awslimitchecker.checker.AwsLimitChecker]
class itself, get the value of the _boto_conn_kwargs property in the constructor, and pass that value in to all
Connectable subclasses. This means that each instance of AwsLimitChecker has its own unique connection-related kwargs
and credentials, and constructing a new instance will work intuitively - either use the newly-specified credentials,
or regenerate STS credentials if configured to use them. I have to extend my deepest gratitude to the folks who
identified and fixed this issue, specifically cstewart87 [https://github.com/cstewart87] for the initial
bug report and description, aebie [https://github.com/aebie] for the tireless and relentlessly thorough
investigation and brainstorming and for coordinating work for a fix, and willusher [https://github.com/willusher]
for the final implementation and dealing (wonderfully) with the dizzying complexity of many of the unit tests
(and even matching the existing style).

0.6.0 (2016-11-12)

This release has a breaking change. The VPC NAT gateways has been renamed
to NAT Gateways per AZ and its get_current_usage() method will now return
a list with multiple items. See the changelog entry for #214 below.

This release requires the following new IAM permissions to function:

	firehose:ListDeliveryStreams

	#217 [https://github.com/jantman/awslimitchecker/issues/217] - add support
for new/missing EC2 instance types: m4.16xlarge, x1.16xlarge, x1.32xlarge,
p2.xlarge, p2.8xlarge, p2.16xlarge.

	#215 [https://github.com/jantman/awslimitchecker/issues/215] - support
“Regional Benefit” Reserved Instances that have no specific AZ set on them. Per
AWS, these are exempt from On-Demand Running Instances limits like all other
RIs.

	#214 [https://github.com/jantman/awslimitchecker/issues/214] - The VPC “NAT gateways”
limit incorrectly calculated usage for the entire region, while the limit is
actually per-AZ. It also had strange capitalization that confused users. The name
has been changed to “NAT Gateways per AZ” and the usage is now correctly calculated
per-AZ instead of region-wide.

	#221 [https://github.com/jantman/awslimitchecker/issues/221] /
PR #222 [https://github.com/jantman/awslimitchecker/pull/222] - Fix bug
in handling of STS Credentials where they are cached permanently in
connectable.Connectable.credentials, and new AwsLimitChecker instances
in the same Python process reuse the first set of STS credentials. This is
fixed by storing the Account ID as part of
connectable.ConnectableCredentials and getting new STS creds if the cached
account ID does not match the current account_id on the Connectable
object.

	PR #216 [https://github.com/jantman/awslimitchecker/pull/216] - add new
“Firehose” service with support for “Delivery streams per region” limit.

	#213 [https://github.com/jantman/awslimitchecker/issues/213] /
PR #188 [https://github.com/jantman/awslimitchecker/pull/188] - support
AWS cross-sdk credential file profiles via -P / --profile, like
awscli.

0.5.1 (2016-09-25)

This release requires the following new IAM permissions to function:

	ec2:DescribeSpot* or more specifically:
	ec2:DescribeSpotDatafeedSubscription

	ec2:DescribeSpotFleetInstances

	ec2:DescribeSpotFleetRequestHistory

	ec2:DescribeSpotFleetRequests

	ec2:DescribeSpotInstanceRequests

	ec2:DescribeSpotPriceHistory

	ec2:DescribeNatGateways

	#51 [https://github.com/jantman/awslimitchecker/issues/51] / PR #201 [https://github.com/jantman/awslimitchecker/pull/201] - Add experimental support for Spot Instance and Spot Fleet limits (only the ones explicitly documented by AWS). This is currently experimental, as the documentation is not terribly clear or detailed, and the author doesn’t have access to any accounts that make use of spot instances. This will be kept experimental until multiple users validate it. For more information, see the EC2 limit documentation.

	PR #204 [https://github.com/jantman/awslimitchecker/pull/204] contributed by hltbra [https://github.com/hltbra] to add support for VPC NAT Gateways limit.

	Add README and Docs link to waffle.io board.

	Fix bug where --skip-ta command line flag was ignored in show_usage() (when running with -u / --show-usage action).

	Add link to waffle.io Kanban board [https://waffle.io/jantman/awslimitchecker]

	#202 [https://github.com/jantman/awslimitchecker/issues/202] - Adds management of integration test IAM policy via Terraform.

	#211 [https://github.com/jantman/awslimitchecker/issues/211] - Add working download stats to README and docs

	Fix broken landscape.io badges in README and docs

	#194 [https://github.com/jantman/awslimitchecker/issues/194] - On Limits page of docs, clarify that Running On-Demand Instances does not include Reserved Instances.

	Multiple tox.ini changes:
	simplify integration and unit/versioncheck testenv blocks using factors and reuse

	py26 testenv was completely unused, and py26-unit was running and working with mock==2.0.0

	use pytest<3.0.0 in py32 envs

	#208 [https://github.com/jantman/awslimitchecker/issues/208] - fix KeyError when timestamp key is missing from TrustedAdvisor check result dict

0.5.0 (2016-07-06)

This release includes a change to awslimitchecker‘s Python API. awslimitchecker.limit.AwsLimit.get_limit can now return either an int or None, as TrustedAdvisor now lists some service limits as being explicitly “unlimited”.

	#195 [https://github.com/jantman/awslimitchecker/issues/195] - Handle TrustedAdvisor explicitly reporting some limits as “unlimited”. This introduces the concept of unlimited limits, where the effective limit is None.

0.4.4 (2016-06-27)

	PR #190 [https://github.com/jantman/awslimitchecker/pull/19] / #189 [https://github.com/jantman/awslimitchecker/issues/189] - Add support for EBS st1 and sc1 volume types (adds “EBS/Throughput Optimized (HDD) volume storage (GiB)” and “EBS/Cold (HDD) volume storage (GiB)” limits).

0.4.3 (2016-05-08)

	PR #184 [https://github.com/jantman/awslimitchecker/pull/184] Fix default VPC/Security groups per VPC limit from 100 to 500, per VPC limits documentation [http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-security-groups] (this limit was increased at some point recently). Thanks to Travis Thieman [https://github.com/thieman] for this contribution.

0.4.2 (2016-04-27)

This release requires the following new IAM permissions to function:

	elasticbeanstalk:DescribeApplications

	elasticbeanstalk:DescribeApplicationVersions

	elasticbeanstalk:DescribeEnvironments

	#70 [https://github.com/jantman/awslimitchecker/issues/70] Add support for ElasicBeanstalk service.

	#177 [https://github.com/jantman/awslimitchecker/issues/177] Integration tests weren’t being properly skipped for PRs.

	#175 [https://github.com/jantman/awslimitchecker/issues/175] the simplest and most clear contributor license agreement I could come up with.

	#172 [https://github.com/jantman/awslimitchecker/issues/172] add an integration test running against sa-east-1, which has fewer services than the popular US regions.

0.4.1 (2016-03-15)

	#170 [https://github.com/jantman/awslimitchecker/issues/170] Critical bug fix in implementation of #71 [https://github.com/jantman/awslimitchecker/issues/71] - SES only supports three regions (us-east-1, us-west-2, eu-west-1) and causes an unhandled connection error if used in another region.

0.4.0 (2016-03-14)

This release requires the following new IAM permissions to function:

	rds:DescribeAccountAttributes

	iam:GetAccountSummary

	s3:ListAllMyBuckets

	ses:GetSendQuota

	cloudformation:DescribeAccountLimits

	cloudformation:DescribeStacks

Issues addressed:

	#150 [https://github.com/jantman/awslimitchecker/issues/150] add CHANGES.rst to Sphinx docs

	#85 [https://github.com/jantman/awslimitchecker/issues/85] and #154 [https://github.com/jantman/awslimitchecker/issues/154]

	add support for RDS ‘DB Clusters’ and ‘DB Cluster Parameter Groups’ limits

	use API to retrieve RDS limits

	switch RDS from calculating usage to using the DescribeAccountAttributes usage information, for all limits other than those which are per-resource and need resource IDs (Max auths per security group, Read replicas per master, Subnets per Subnet Group)

	awslimitchecker now requires an additional IAM permission, rds:DescribeAccountAttributes

	#157 [https://github.com/jantman/awslimitchecker/issues/157] fix for TrustedAdvisor polling multiple times - have TA set an instance variable flag when it updates services after a poll, and skip further polls and updates if the flag is set. Also add an integration test to confirm this.

	#50 [https://github.com/jantman/awslimitchecker/issues/50] Add support for IAM service with a subset of its limits (Groups, Instance Profiles, Policies, Policy Versions In Use, Roles, Server Certificates, Users), using both limits and usage information from the GetAccountSummary [http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountSummary.html] API action. This requires an additional IAM permission, iam:GetAccountSummary.

	#48 [https://github.com/jantman/awslimitchecker/issues/48] Add support for S3 Buckets limit. This requires an additional IAM permission, s3:ListAllMyBuckets.

	#71 [https://github.com/jantman/awslimitchecker/issues/71] Add support for SES service (daily sending limit). This requires an additional IAM permission, ses:GetSendQuota.

	#69 [https://github.com/jantman/awslimitchecker/issues/69] Add support for CloudFormation service Stacks limit. This requires additional IAM permissions, cloudformation:DescribeAccountLimits and cloudformation:DescribeStacks.

	#166 [https://github.com/jantman/awslimitchecker/issues/166] Speed up TravisCI tests by dropping testing for PyPy and PyPy3, and only running the -versioncheck tests for two python interpreters instead of 8.

0.3.2 (2016-03-11)

	#155 [https://github.com/jantman/awslimitchecker/issues/155] Bug fix for uncaught KeyError on accounts with Trusted Advisor (business-level support and above). This was caused by an undocumented change released by AWS between Thu, 10 Mar 2016 07:00:00 GMT and Fri, 11 Mar 2016 07:00:00 GMT, where five new IAM-related checks were introduced that lack the region data field (which the TrustedAdvisorResourceDetail API docs [https://docs.aws.amazon.com/awssupport/latest/APIReference/API_TrustedAdvisorResourceDetail.html] still list as a required field).

0.3.1 (2016-03-04)

	#117 [https://github.com/jantman/awslimitchecker/issues/117] fix Python 3.5 TravisCI tests and re-enable automatic testing for 3.5.

	#116 [https://github.com/jantman/awslimitchecker/issues/116] add t2.nano EC2 instance type; fix typo - “m4.8xlarge” should have been “m4.10xlarge”; update default limits for m4.(4|10)xlarge

	#134 [https://github.com/jantman/awslimitchecker/issues/134] Minor update to project description in docs and setup.py; use only _VERSION (not git) when building in RTD; include short description in docs HTML title; set meta description on docs index.rst.

	#128 [https://github.com/jantman/awslimitchecker/issues/128] Update Development and Getting Help documentation; add GitHub CONTRIBUTING.md file with link back to docs, as well as Issue and PR templates.

	#131 [https://github.com/jantman/awslimitchecker/issues/131] Refactor TrustedAdvisor interaction with limits for special naming cases (limits where the TrustedAdvisor service or limit name doesn’t match that of the awslimitchecker limit); enable newly-available TrustedAdvisor data for some EC2 on-demand instance usage.

0.3.0 (2016-02-18)

	Add coverage for one code branch introduced in PR #100 [https://github.com/jantman/awslimitchecker/pull/100] that wasn’t covered by tests.

	#112 [https://github.com/jantman/awslimitchecker/issues/112] fix a bug in the versioncheck integration tests, and a bug uncovered in versioncheck itself, both dealing with checkouts that are on a un-cloned branch.

	#105 [https://github.com/jantman/awslimitchecker/issues/105] build and upload wheels in addition to sdist

	#95 [https://github.com/jantman/awslimitchecker/issues/95] major refactor to convert AWS client library from boto [https://github.com/boto/boto] to boto3 [https://github.com/boto/boto3]. This also includes significant changes to the internal connection logic and some of the internal (private) API. Pagination has been moved to boto3 wherever possible, and handling of API request throttling has been removed from awslimitchecker, as boto3 handles this itself. This also introduces full, official support for python3.

	Add separate localdocs tox env for generating documentation and updating output examples.

	#113 [https://github.com/jantman/awslimitchecker/issues/113] update, expand and clarify documentation around threshold overrides; ignore some sites from docs linkcheck.

	#114 [https://github.com/jantman/awslimitchecker/issues/114] expanded automatic integration tests

	Please note that version 0.3.0 of awslimitchecker moved from using boto as its AWS API client to using boto3. This change is mostly transparent, but there is a minor change in how AWS credentials are handled. In boto, if the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables were set, and the region was not set explicitly via awslimitchecker, the AWS region would either be taken from the AWS_DEFAULT_REGION environment variable or would default to us-east-1, regardless of whether a configuration file (~/.aws/credentials or ~/.aws/config) was present. With boto3, it appears that the default region from the configuration file will be used if present, regardless of whether the credentials come from that file or from environment variables.

0.2.3 (2015-12-16)

	PR #100 [https://github.com/jantman/awslimitchecker/pull/100] support MFA tokens when using STS assume role

	#107 [https://github.com/jantman/awslimitchecker/issues/107] add support to explicitly disable pagination, and use for TrustedAdvisor to prevent pagination warnings

0.2.2 (2015-12-02)

	#83 [https://github.com/jantman/awslimitchecker/issues/83] remove the “v” prefix from version tags so ReadTheDocs will build them automatically.

	#21 [https://github.com/jantman/awslimitchecker/issues/21] run simple integration tests of -l and -u for commits to main repo branches.

0.2.1 (2015-12-01)

	#101 [https://github.com/jantman/awslimitchecker/issues/101] Ignore stopped and terminated instances from EC2 Running On-Demand Instances usage count.

	#47 [https://github.com/jantman/awslimitchecker/issues/47] In VersionCheck git -e tests, explicitly fetch git tags at beginning of test.

0.2.0 (2015-11-29)

	#86 [https://github.com/jantman/awslimitchecker/issues/86] wrap all AWS API queries in awslimitchecker.utils.boto_query_wrapper to retry queries with an exponential backoff when API request throttling/rate limiting is encountered

	Attempt at fixing #47 [https://github.com/jantman/awslimitchecker/issues/47] where versioncheck acceptance tests fail under TravisCI, when testing master after a tagged release (when there’s a tag for the current commit)

	Fix #73 [https://github.com/jantman/awslimitchecker/issues/73] versioncheck.py reports incorrect information when package is installed in a virtualenv inside a git repository

	Fix #87 [https://github.com/jantman/awslimitchecker/issues/87] run coverage in all unit test Tox environments, not a dedicated env

	Fix #75 [https://github.com/jantman/awslimitchecker/issues/75] re-enable py26 Travis builds now that pytest-dev/pytest#1035 [https://github.com/pytest-dev/pytest/issues/1035] is fixed (pytest >= 2.8.3)

	Fix #13 [https://github.com/jantman/awslimitchecker/issues/13] re-enable Sphinx documentation linkcheck

	Fix #40 [https://github.com/jantman/awslimitchecker/issues/40] add support for pagination of API responses (to get all results) and handle pagination for all current services

	Fix #88 [https://github.com/jantman/awslimitchecker/issues/88] add support for API-derived limits. This is a change to the public API for awslimitchecker.limit.AwsLimit and the CLI output.

	Fix #72 [https://github.com/jantman/awslimitchecker/issues/72] add support for some new limits returned by Trusted Advisor. This renames the following limits:
* EC2/EC2-VPC Elastic IPs to EC2/VPC Elastic IP addresses (EIPs)
* RDS/Read Replicas per Master to RDS/Read replicas per master
* RDS/Parameter Groups to RDS/DB parameter groups

	Fix #84 [https://github.com/jantman/awslimitchecker/issues/84] pull some EC2 limits from the API’s DescribeAccountAttributes action

	Fix #94 [https://github.com/jantman/awslimitchecker/issues/94] pull AutoScaling limits from the API’s DescribeAccountLimits action

	Add autoscaling:DescribeAccountLimits and ec2:DescribeAccountAttributes to required IAM permissions.

	Ignore AccountLimits objects from result pagination

0.1.3 (2015-10-04)

	Update trove classifier Development Status in setup.py to Beta

	Fix markup formatting issue in docs/source/getting_started.rst

	temporarily disable py26 testenv in Travis; failing due to upstream bug https://github.com/pytest-dev/pytest/issues/1035

	PR #64 [https://github.com/jantman/awslimitchecker/pull/64] and #68 [https://github.com/jantman/awslimitchecker/issues/68] -
support [STS](http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html) and regions
* Add support for passing in a region to connect to via -r / --region
* Add support for using STS to check resources in another account, including support for external_id
* Major refactor of how service classes connect to AWS API

	#74 [https://github.com/jantman/awslimitchecker/issues/74] add support for EC2 t2.large instance type

	#65 [https://github.com/jantman/awslimitchecker/issues/65] handle case where ElastiCache API returns CacheCluster response with CacheNodes None

	#63 [https://github.com/jantman/awslimitchecker/issues/63] update Python usage documentation

	#49 [https://github.com/jantman/awslimitchecker/issues/49] clean up badges in README.rst and sphinx index.rst; PyPi downloads and version badges broken (switch to shields.io)

	#67 [https://github.com/jantman/awslimitchecker/issues/67] fix typo in required IAM policy; comma missing in list returned from _Ec2Service.required_iam_permissions()

	#76 [https://github.com/jantman/awslimitchecker/issues/76] default limits for EBS volume usage were in TiB not GiB, causing invalid default limits on accounts without Trusted Advisor

	Changes to some tests in test_versioncheck.py to aid in debugging #47 [https://github.com/jantman/awslimitchecker/issues/47] where Travis tests fail on master because of git tag from release (if re-run after release)

0.1.2 (2015-08-13)

	#62 [https://github.com/jantman/awslimitchecker/issues/62] - For ‘RDS/DB snapshots per user’ limit, only count manual snapshots. (fix bug in fix for #54 [https://github.com/jantman/awslimitchecker/issues/54])

0.1.1 (2015-08-13)

	#54 [https://github.com/jantman/awslimitchecker/issues/54] - For ‘RDS/DB snapshots per user’ limit, only count manual snapshots.

	PR #58 [https://github.com/jantman/awslimitchecker/pull/58] - Fix issue where BotoServerError exception is unhandled when checking ElastiCache limits on new accounts without EC2-Classic.

	#55 [https://github.com/jantman/awslimitchecker/issues/55] - use .version instead of .parsed_version to fix version information when using pip<6

	#46 [https://github.com/jantman/awslimitchecker/issues/46] - versioncheck integration test fixes
* Rename -integration tox environments to -versioncheck
* Skip versioncheck git install integration tests on PRs, since they’ll fail

	#56 [https://github.com/jantman/awslimitchecker/issues/56] - logging fixes
* change the AGPL warning message to write directly to STDERR instead of logging
* document logging configuration for library use
* move boto log suppression from checker to runner

	Add contributing docs

0.1.0 (2015-07-25)

	initial released version

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 awslimitchecker	

 	
 	
 awslimitchecker.checker	

 	
 	
 awslimitchecker.connectable	

 	
 	
 awslimitchecker.limit	

 	
 	
 awslimitchecker.runner	

 	
 	
 awslimitchecker.services	

 	
 	
 awslimitchecker.services.apigateway	

 	
 	
 awslimitchecker.services.autoscaling	

 	
 	
 awslimitchecker.services.base	

 	
 	
 awslimitchecker.services.cloudformation	

 	
 	
 awslimitchecker.services.dynamodb	

 	
 	
 awslimitchecker.services.ebs	

 	
 	
 awslimitchecker.services.ec2	

 	
 	
 awslimitchecker.services.efs	

 	
 	
 awslimitchecker.services.elasticache	

 	
 	
 awslimitchecker.services.elasticbeanstalk	

 	
 	
 awslimitchecker.services.elb	

 	
 	
 awslimitchecker.services.firehose	

 	
 	
 awslimitchecker.services.iam	

 	
 	
 awslimitchecker.services.rds	

 	
 	
 awslimitchecker.services.redshift	

 	
 	
 awslimitchecker.services.s3	

 	
 	
 awslimitchecker.services.ses	

 	
 	
 awslimitchecker.services.vpc	

 	
 	
 awslimitchecker.trustedadvisor	

 	
 	
 awslimitchecker.utils	

 	
 	
 awslimitchecker.version	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | L
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__abstractmethods__ (awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	__call__() (awslimitchecker.utils.StoreKeyValuePair method)

 	__dict__ (awslimitchecker.checker.AwsLimitChecker attribute)

 	(awslimitchecker.connectable.Connectable attribute)

 	(awslimitchecker.connectable.ConnectableCredentials attribute)

 	(awslimitchecker.limit.AwsLimit attribute)

 	(awslimitchecker.limit.AwsLimitUsage attribute)

 	(awslimitchecker.runner.Runner attribute)

 	(awslimitchecker.version.AWSLimitCheckerVersion attribute)

 	__eq__() (awslimitchecker.limit.AwsLimitUsage method)

 	__ge__() (awslimitchecker.limit.AwsLimitUsage method)

 	__gt__() (awslimitchecker.limit.AwsLimitUsage method)

 	__init__() (awslimitchecker.checker.AwsLimitChecker method)

 	(awslimitchecker.connectable.ConnectableCredentials method)

 	(awslimitchecker.limit.AwsLimit method)

 	(awslimitchecker.limit.AwsLimitUsage method)

 	(awslimitchecker.runner.Runner method)

 	(awslimitchecker.services.base._AwsService method)

 	(awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	(awslimitchecker.utils.StoreKeyValuePair method)

 	(awslimitchecker.version.AWSLimitCheckerVersion method)

 	__lt__() (awslimitchecker.limit.AwsLimitUsage method)

 	__metaclass__ (awslimitchecker.services.base._AwsService attribute)

 	__module__ (awslimitchecker.checker.AwsLimitChecker attribute)

 	(awslimitchecker.connectable.Connectable attribute)

 	(awslimitchecker.connectable.ConnectableCredentials attribute)

 	(awslimitchecker.limit.AwsLimit attribute)

 	(awslimitchecker.limit.AwsLimitUsage attribute)

 	(awslimitchecker.runner.Runner attribute)

 	(awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	(awslimitchecker.trustedadvisor.TrustedAdvisor attribute)

 	(awslimitchecker.utils.StoreKeyValuePair attribute)

 	(awslimitchecker.version.AWSLimitCheckerVersion attribute)

 	__ne__() (awslimitchecker.limit.AwsLimitUsage method)

 	__repr__() (awslimitchecker.version.AWSLimitCheckerVersion method)

 	__str__() (awslimitchecker.limit.AwsLimitUsage method)

 	(awslimitchecker.version.AWSLimitCheckerVersion method)

 	__weakref__ (awslimitchecker.checker.AwsLimitChecker attribute)

 	(awslimitchecker.connectable.Connectable attribute)

 	(awslimitchecker.connectable.ConnectableCredentials attribute)

 	(awslimitchecker.limit.AwsLimit attribute)

 	(awslimitchecker.limit.AwsLimitUsage attribute)

 	(awslimitchecker.runner.Runner attribute)

 	(awslimitchecker.version.AWSLimitCheckerVersion attribute)

 	_abc_cache (awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	_abc_negative_cache (awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	_abc_negative_cache_version (awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	
 	_abc_registry (awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	_add_current_usage() (awslimitchecker.limit.AwsLimit method)

 	_ApigatewayService (class in awslimitchecker.services.apigateway)

 	_AutoscalingService (class in awslimitchecker.services.autoscaling)

 	_AwsService (class in awslimitchecker.services.base)

 	_boto_conn_kwargs (awslimitchecker.checker.AwsLimitChecker attribute)

 	_can_refresh_check() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_CloudformationService (class in awslimitchecker.services.cloudformation)

 	_DynamodbService (class in awslimitchecker.services.dynamodb)

 	_EbsService (class in awslimitchecker.services.ebs)

 	_Ec2Service (class in awslimitchecker.services.ec2)

 	_EfsService (class in awslimitchecker.services.efs)

 	_ElastiCacheService (class in awslimitchecker.services.elasticache)

 	_ElasticBeanstalkService (class in awslimitchecker.services.elasticbeanstalk)

 	_ElbService (class in awslimitchecker.services.elb)

 	_find_cluster_manual_snapshots() (awslimitchecker.services.redshift._RedshiftService method)

 	_find_cluster_subnet_groups() (awslimitchecker.services.redshift._RedshiftService method)

 	_find_delivery_streams() (awslimitchecker.services.firehose._FirehoseService method)

 	_find_usage_ACLs() (awslimitchecker.services.vpc._VpcService method)

 	_find_usage_api_keys() (awslimitchecker.services.apigateway._ApigatewayService method)

 	_find_usage_apis() (awslimitchecker.services.apigateway._ApigatewayService method)

 	_find_usage_application_versions() (awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService method)

 	_find_usage_applications() (awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService method)

 	_find_usage_certs() (awslimitchecker.services.apigateway._ApigatewayService method)

 	_find_usage_dynamodb() (awslimitchecker.services.dynamodb._DynamodbService method)

 	_find_usage_ebs() (awslimitchecker.services.ebs._EbsService method)

 	_find_usage_elbv1() (awslimitchecker.services.elb._ElbService method)

 	_find_usage_elbv2() (awslimitchecker.services.elb._ElbService method)

 	_find_usage_environments() (awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService method)

 	_find_usage_filesystems() (awslimitchecker.services.efs._EfsService method)

 	_find_usage_gateways() (awslimitchecker.services.vpc._VpcService method)

 	_find_usage_instances() (awslimitchecker.services.ec2._Ec2Service method)

 	(awslimitchecker.services.rds._RDSService method)

 	_find_usage_nat_gateways() (awslimitchecker.services.vpc._VpcService method)

 	_find_usage_networking_eips() (awslimitchecker.services.ec2._Ec2Service method)

 	_find_usage_networking_eni_sg() (awslimitchecker.services.ec2._Ec2Service method)

 	_find_usage_networking_sgs() (awslimitchecker.services.ec2._Ec2Service method)

 	_find_usage_nodes() (awslimitchecker.services.elasticache._ElastiCacheService method)

 	_find_usage_parameter_groups() (awslimitchecker.services.elasticache._ElastiCacheService method)

 	_find_usage_plans() (awslimitchecker.services.apigateway._ApigatewayService method)

 	_find_usage_route_tables() (awslimitchecker.services.vpc._VpcService method)

 	_find_usage_security_groups() (awslimitchecker.services.elasticache._ElastiCacheService method)

 	(awslimitchecker.services.rds._RDSService method)

 	_find_usage_snapshots() (awslimitchecker.services.ebs._EbsService method)

 	_find_usage_spot_fleets() (awslimitchecker.services.ec2._Ec2Service method)

 	_find_usage_spot_instances() (awslimitchecker.services.ec2._Ec2Service method)

 	_find_usage_subnet_groups() (awslimitchecker.services.elasticache._ElastiCacheService method)

 	(awslimitchecker.services.rds._RDSService method)

 	_find_usage_subnets() (awslimitchecker.services.vpc._VpcService method)

 	_find_usage_vpcs() (awslimitchecker.services.vpc._VpcService method)

 	_find_usages_vpn_gateways() (awslimitchecker.services.vpc._VpcService method)

 	_FirehoseService (class in awslimitchecker.services.firehose)

 	_get_check_result() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_get_dict_value_by_path() (in module awslimitchecker.utils)

 	_get_latest_version() (in module awslimitchecker.utils)

 	_get_limit_check_id() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_get_limits_ebs() (awslimitchecker.services.ebs._EbsService method)

 	_get_limits_instances() (awslimitchecker.services.ec2._Ec2Service method)

 	_get_limits_networking() (awslimitchecker.services.ec2._Ec2Service method)

 	_get_limits_spot() (awslimitchecker.services.ec2._Ec2Service method)

 	_get_refreshed_check_result() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_get_reserved_instance_count() (awslimitchecker.services.ec2._Ec2Service method)

 	_get_sts_token() (awslimitchecker.checker.AwsLimitChecker method)

 	_get_thresholds() (awslimitchecker.limit.AwsLimit method)

 	_get_version_info() (in module awslimitchecker.version)

 	_IamService (class in awslimitchecker.services.iam)

 	_instance_types() (awslimitchecker.services.ec2._Ec2Service method)

 	_instance_usage() (awslimitchecker.services.ec2._Ec2Service method)

 	_make_ta_service_dict() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_poll() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_poll_for_refresh() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_RDSService (class in awslimitchecker.services.rds)

 	_RedshiftService (class in awslimitchecker.services.redshift)

 	_reset_usage() (awslimitchecker.limit.AwsLimit method)

 	_S3Service (class in awslimitchecker.services.s3)

 	_SesService (class in awslimitchecker.services.ses)

 	_set_api_limit() (awslimitchecker.limit.AwsLimit method)

 	_set_dict_value_by_path() (in module awslimitchecker.utils)

 	_set_ta_limit() (awslimitchecker.limit.AwsLimit method)

 	(awslimitchecker.services.base._AwsService method)

 	_set_ta_unlimited() (awslimitchecker.limit.AwsLimit method)

 	_update_limits_from_api() (awslimitchecker.services.autoscaling._AutoscalingService method)

 	(awslimitchecker.services.cloudformation._CloudformationService method)

 	(awslimitchecker.services.dynamodb._DynamodbService method)

 	(awslimitchecker.services.ec2._Ec2Service method)

 	(awslimitchecker.services.elb._ElbService method)

 	(awslimitchecker.services.iam._IamService method)

 	(awslimitchecker.services.rds._RDSService method)

 	(awslimitchecker.services.ses._SesService method)

 	_update_services() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

 	_update_usage_for_elbv2() (awslimitchecker.services.elb._ElbService method)

 	_VpcService (class in awslimitchecker.services.vpc)

A

 	
 	api_name (awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	(awslimitchecker.trustedadvisor.TrustedAdvisor attribute)

 	API_NAME_TO_LIMIT (awslimitchecker.services.rds._RDSService attribute)

 	API_TO_LIMIT_NAME (awslimitchecker.services.iam._IamService attribute)

 	AwsLimit (class in awslimitchecker.limit)

 	AwsLimitChecker (class in awslimitchecker.checker)

 	awslimitchecker (module)

 	awslimitchecker.checker (module)

 	awslimitchecker.connectable (module)

 	
 	awslimitchecker.limit (module)

 	awslimitchecker.runner (module)

 	awslimitchecker.services (module)

 	awslimitchecker.services.apigateway (module)

 	awslimitchecker.services.autoscaling (module)

 	awslimitchecker.services.base (module)

 	awslimitchecker.services.cloudformation (module)

 	awslimitchecker.services.dynamodb (module)

 	awslimitchecker.services.ebs (module)

 	awslimitchecker.services.ec2 (module)

 	awslimitchecker.services.efs (module)

 	awslimitchecker.services.elasticache (module)

 	awslimitchecker.services.elasticbeanstalk (module)

 	awslimitchecker.services.elb (module)

 	awslimitchecker.services.firehose (module)

 	awslimitchecker.services.iam (module)

 	awslimitchecker.services.rds (module)

 	awslimitchecker.services.redshift (module)

 	awslimitchecker.services.s3 (module)

 	awslimitchecker.services.ses (module)

 	awslimitchecker.services.vpc (module)

 	awslimitchecker.trustedadvisor (module)

 	awslimitchecker.utils (module)

 	awslimitchecker.version (module)

 	AWSLimitCheckerVersion (class in awslimitchecker.version)

 	AwsLimitUsage (class in awslimitchecker.limit)

C

 	
 	check_thresholds() (awslimitchecker.checker.AwsLimitChecker method)

 	(awslimitchecker.limit.AwsLimit method)

 	(awslimitchecker.runner.Runner method)

 	(awslimitchecker.services.base._AwsService method)

 	color_output() (awslimitchecker.runner.Runner method)

 	
 	connect() (awslimitchecker.connectable.Connectable method)

 	connect_resource() (awslimitchecker.connectable.Connectable method)

 	Connectable (class in awslimitchecker.connectable)

 	ConnectableCredentials (class in awslimitchecker.connectable)

 	console_entry_point() (awslimitchecker.runner.Runner method)

 	(in module awslimitchecker.runner)

D

 	
 	datetime_now() (in module awslimitchecker.trustedadvisor)

 	
 	dict2cols() (in module awslimitchecker.utils)

F

 	
 	find_usage() (awslimitchecker.checker.AwsLimitChecker method)

 	(awslimitchecker.services.apigateway._ApigatewayService method)

 	(awslimitchecker.services.autoscaling._AutoscalingService method)

 	(awslimitchecker.services.base._AwsService method)

 	(awslimitchecker.services.cloudformation._CloudformationService method)

 	(awslimitchecker.services.dynamodb._DynamodbService method)

 	(awslimitchecker.services.ebs._EbsService method)

 	(awslimitchecker.services.ec2._Ec2Service method)

 	(awslimitchecker.services.efs._EfsService method)

 	(awslimitchecker.services.elasticache._ElastiCacheService method)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService method)

 	(awslimitchecker.services.elb._ElbService method)

 	(awslimitchecker.services.firehose._FirehoseService method)

 	(awslimitchecker.services.iam._IamService method)

 	(awslimitchecker.services.rds._RDSService method)

 	(awslimitchecker.services.redshift._RedshiftService method)

 	(awslimitchecker.services.s3._S3Service method)

 	(awslimitchecker.services.ses._SesService method)

 	(awslimitchecker.services.vpc._VpcService method)

G

 	
 	get_criticals() (awslimitchecker.limit.AwsLimit method)

 	get_current_usage() (awslimitchecker.limit.AwsLimit method)

 	get_current_usage_str() (awslimitchecker.limit.AwsLimit method)

 	get_limit() (awslimitchecker.limit.AwsLimit method)

 	get_limit_source() (awslimitchecker.limit.AwsLimit method)

 	get_limits() (awslimitchecker.checker.AwsLimitChecker method)

 	(awslimitchecker.services.apigateway._ApigatewayService method)

 	(awslimitchecker.services.autoscaling._AutoscalingService method)

 	(awslimitchecker.services.base._AwsService method)

 	(awslimitchecker.services.cloudformation._CloudformationService method)

 	(awslimitchecker.services.dynamodb._DynamodbService method)

 	(awslimitchecker.services.ebs._EbsService method)

 	(awslimitchecker.services.ec2._Ec2Service method)

 	(awslimitchecker.services.efs._EfsService method)

 	(awslimitchecker.services.elasticache._ElastiCacheService method)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService method)

 	(awslimitchecker.services.elb._ElbService method)

 	(awslimitchecker.services.firehose._FirehoseService method)

 	(awslimitchecker.services.iam._IamService method)

 	(awslimitchecker.services.rds._RDSService method)

 	(awslimitchecker.services.redshift._RedshiftService method)

 	(awslimitchecker.services.s3._S3Service method)

 	(awslimitchecker.services.ses._SesService method)

 	(awslimitchecker.services.vpc._VpcService method)

 	
 	get_project_url() (awslimitchecker.checker.AwsLimitChecker method)

 	get_required_iam_policy() (awslimitchecker.checker.AwsLimitChecker method)

 	get_service_names() (awslimitchecker.checker.AwsLimitChecker method)

 	get_value() (awslimitchecker.limit.AwsLimitUsage method)

 	get_version() (awslimitchecker.checker.AwsLimitChecker method)

 	get_warnings() (awslimitchecker.limit.AwsLimit method)

I

 	
 	iam_policy() (awslimitchecker.runner.Runner method)

L

 	
 	list_defaults() (awslimitchecker.runner.Runner method)

 	
 	list_limits() (awslimitchecker.runner.Runner method)

 	list_services() (awslimitchecker.runner.Runner method)

P

 	
 	paginate_dict() (in module awslimitchecker.utils)

 	
 	parse_args() (awslimitchecker.runner.Runner method)

 	print_issue() (awslimitchecker.runner.Runner method)

R

 	
 	remove_services() (awslimitchecker.checker.AwsLimitChecker method)

 	required_iam_permissions() (awslimitchecker.services.apigateway._ApigatewayService method)

 	(awslimitchecker.services.autoscaling._AutoscalingService method)

 	(awslimitchecker.services.base._AwsService method)

 	(awslimitchecker.services.cloudformation._CloudformationService method)

 	(awslimitchecker.services.dynamodb._DynamodbService method)

 	(awslimitchecker.services.ebs._EbsService method)

 	(awslimitchecker.services.ec2._Ec2Service method)

 	(awslimitchecker.services.efs._EfsService method)

 	(awslimitchecker.services.elasticache._ElastiCacheService method)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService method)

 	(awslimitchecker.services.elb._ElbService method)

 	(awslimitchecker.services.firehose._FirehoseService method)

 	(awslimitchecker.services.iam._IamService method)

 	(awslimitchecker.services.rds._RDSService method)

 	(awslimitchecker.services.redshift._RedshiftService method)

 	(awslimitchecker.services.s3._S3Service method)

 	(awslimitchecker.services.ses._SesService method)

 	(awslimitchecker.services.vpc._VpcService method)

 	
 	Runner (class in awslimitchecker.runner)

S

 	
 	service_name (awslimitchecker.services.apigateway._ApigatewayService attribute)

 	(awslimitchecker.services.autoscaling._AutoscalingService attribute)

 	(awslimitchecker.services.base._AwsService attribute)

 	(awslimitchecker.services.cloudformation._CloudformationService attribute)

 	(awslimitchecker.services.dynamodb._DynamodbService attribute)

 	(awslimitchecker.services.ebs._EbsService attribute)

 	(awslimitchecker.services.ec2._Ec2Service attribute)

 	(awslimitchecker.services.efs._EfsService attribute)

 	(awslimitchecker.services.elasticache._ElastiCacheService attribute)

 	(awslimitchecker.services.elasticbeanstalk._ElasticBeanstalkService attribute)

 	(awslimitchecker.services.elb._ElbService attribute)

 	(awslimitchecker.services.firehose._FirehoseService attribute)

 	(awslimitchecker.services.iam._IamService attribute)

 	(awslimitchecker.services.rds._RDSService attribute)

 	(awslimitchecker.services.redshift._RedshiftService attribute)

 	(awslimitchecker.services.s3._S3Service attribute)

 	(awslimitchecker.services.ses._SesService attribute)

 	(awslimitchecker.services.vpc._VpcService attribute)

 	(awslimitchecker.trustedadvisor.TrustedAdvisor attribute)

 	
 	set_limit_override() (awslimitchecker.checker.AwsLimitChecker method)

 	(awslimitchecker.limit.AwsLimit method)

 	(awslimitchecker.services.base._AwsService method)

 	set_limit_overrides() (awslimitchecker.checker.AwsLimitChecker method)

 	(awslimitchecker.runner.Runner method)

 	set_threshold_override() (awslimitchecker.checker.AwsLimitChecker method)

 	(awslimitchecker.limit.AwsLimit method)

 	(awslimitchecker.services.base._AwsService method)

 	set_threshold_overrides() (awslimitchecker.checker.AwsLimitChecker method)

 	show_usage() (awslimitchecker.runner.Runner method)

 	SOURCE_API (in module awslimitchecker.limit)

 	SOURCE_DEFAULT (in module awslimitchecker.limit)

 	SOURCE_OVERRIDE (in module awslimitchecker.limit)

 	SOURCE_TA (in module awslimitchecker.limit)

 	StoreKeyValuePair (class in awslimitchecker.utils)

T

 	
 	ta_limit_name (awslimitchecker.limit.AwsLimit attribute)

 	
 	ta_service_name (awslimitchecker.limit.AwsLimit attribute)

 	TrustedAdvisor (class in awslimitchecker.trustedadvisor)

U

 	
 	update_limits() (awslimitchecker.trustedadvisor.TrustedAdvisor method)

V

 	
 	version_str (awslimitchecker.version.AWSLimitCheckerVersion attribute)

 _static/plus.png

_static/down-pressed.png

_static/comment.png

nav.xhtml

 Table of Contents

 		awslimitchecker

 		Getting Started

 		What It Does

 		Nomenclature

 		Requirements

 		Installing

 		Version Specification

 		Credentials

 		Regions

 		Trusted Advisor

 		Required Permissions

 		Command Line Usage

 		Examples

 		Listing Supported Services

 		Listing Default Limits

 		Viewing Limits

 		Disabling Trusted Advisor Checks

 		Disabling Specific Services

 		Checking Usage

 		Overriding Limits

 		Check Limits Against Thresholds

 		Set Custom Thresholds

 		Required IAM Policy

 		Connect to a Specific Region

 		Assume a Role in Another Account with STS

 		Python Usage

 		Full Jenkins Example

 		Simple Examples

 		Instantiating the Class

 		Specifying a Region

 		Refreshing Trusted Advisor Check Results

 		Assuming a Role with STS

 		Setting a Limit Override

 		Setting a Threshold Override

 		Checking Thresholds

 		Disabling Trusted Advisor

 		Skipping Specific Services

 		Logging

 		Advanced Examples

 		CI / Deployment Checks

 		Required IAM Permissions

 		Supported Limits

 		Trusted Advisor Data

 		Limits Retrieved from Service APIs

 		Current Checks

 		ApiGateway

 		AutoScaling

 		CloudFormation

 		DynamoDB

 		EBS

 		EC2

 		EFS

 		ELB

 		ElastiCache

 		ElasticBeanstalk

 		Firehose

 		IAM

 		RDS

 		Redshift

 		S3

 		SES

 		VPC

 		Getting Help

 		Enterprise Support Agreements and Contract Development

 		Reporting Bugs and Asking Questions

 		Guidelines for Reporting Issues

 		Feature Requests

 		Bug Reports

 		Development

 		Pull Requests

 		Pull Request Guidelines

 		Installing for Development

 		Guidelines

 		Adding New Limits and Checks to Existing Services

 		Adding New Services

 		Trusted Advisor Checks

 		Unit Testing

 		Integration Testing

 		Building Docs

 		AGPL License

 		Handling Issues and PRs

 		Versioning Policy

 		Release Checklist

 		Release Issue Template

 		Internals

 		Overall Program Flow

 		Trusted Advisor

 		Service API Limit Information

 		Limit Value Precedence

 		Threshold Overrides

 		API

 		awslimitchecker package

 		Subpackages

 		Submodules

 		Changelog

 		1.0.0 (2017-09-21)

 		0.11.0 (2017-08-06)

 		0.10.0 (2017-06-25)

 		0.9.0 (2017-06-11)

 		0.8.0 (2017-03-11)

 		0.7.0 (2017-01-15)

 		0.6.0 (2016-11-12)

 		0.5.1 (2016-09-25)

 		0.5.0 (2016-07-06)

 		0.4.4 (2016-06-27)

 		0.4.3 (2016-05-08)

 		0.4.2 (2016-04-27)

 		0.4.1 (2016-03-15)

 		0.4.0 (2016-03-14)

 		0.3.2 (2016-03-11)

 		0.3.1 (2016-03-04)

 		0.3.0 (2016-02-18)

 		0.2.3 (2015-12-16)

 		0.2.2 (2015-12-02)

 		0.2.1 (2015-12-01)

 		0.2.0 (2015-11-29)

 		0.1.3 (2015-10-04)

 		0.1.2 (2015-08-13)

 		0.1.1 (2015-08-13)

 		0.1.0 (2015-07-25)

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

